```
Practice Heat-Transfer Problems:
Forced Convection
Free Convection
```

Practice 1: A wide, deep rectangular oven (1.0 ft tall) is used for baking loaves of bread. During the baking process the temperature of the air in the oven reaches a stable value of $100^{\circ} \mathrm{F}$. The oven side-wall temperature is measured at this time to be a stable $450^{\circ} \mathrm{F}$. Please estimate the heat flux from the wall per unit width.

Practice 2: A hydrocarbon oil enters a pipe ($0.0303 f t$ inner diameter; 15.0 ft long) at a flow rate of $80 \mathrm{lb} / \mathrm{h}$. Steam condenses on the outside of the pipe, keeping the inside pipe surface at a constant $350^{\circ} \mathrm{F}$. If the temperature of the entering oil is $150^{\circ} \mathrm{F}$, what is temperature of the oil at the outlet of the pipe?

Hydrocarbon oil properties:

Mean heat capacity $=0.50 \frac{B T U}{l b_{m}{ }^{\circ} F}$
Thermal conductivity $=0.083 \frac{B T U}{h f t^{\circ} F}$
Viscosity $=$
$6.50 \mathrm{cp}, 150^{\circ} \mathrm{F}$
$5.05 \mathrm{cp} 200^{\circ} \mathrm{F}$
$3.80 c p 250^{\circ} \mathrm{F}$
$2.82 \mathrm{cp} 300^{\circ} \mathrm{F}$
$1.95 \mathrm{cp} 350^{\circ} \mathrm{F}$

Reference: Geankoplis Ex. 4.5-5 page 269

Practice 3: Air flows through a tube (25.4 mm inside diameter, long tube) at $7.62 \mathrm{~m} / \mathrm{s}$. Steam condenses on the outside of the tube such that the inside surface temperature of the tube is 488.7 K . If the air pressure is 206.8 kPa and the mean bulk temperature of the air is $\left(\mathrm{T}_{\text {out }}+\mathrm{T}_{\text {in }}\right) / 2=477.6 \mathrm{~K}$, what is the steady-state heat flux to the air?

Practice 4: Hard rubber tubing (inside radius $=5.0 \mathrm{~mm}$; outside radius $=20.0 \mathrm{~mm}$) is used as a cooling coil in a reaction bath. Cold water is flowing rapidly inside the tubing; the inside wall temperature is 274.9 K and the outside wall temperature is 297.1 K . To keep the reaction in the bath under control, the required cooling rate is 14.65 W . What is the minimum length of tubing needed to accomplish this cooling rate? What length would be needed if the coil were copper?

Hard rubber properties:

Density $=1198 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Thermal conductivity $\left(0^{\circ} \mathrm{C}\right)=0.151 \frac{\mathrm{~W}}{\mathrm{mK}}$

Practice 5: A cold-storage room is constructed of an inner layer of pine (thickness $=12.7 \mathrm{~mm}$), a middle layer of cork board (thickness $=101.6 \mathrm{~mm}$), and an outer layer of concrete (thickness = 76.2 mm). The inside wall surface temperature is 255.4 K and the outside wall surface temperature is 297.1 K . What is the heat loss per square meter through the walls and what is the temperature at the interface between the wood and the cork board?

Material properties:

Thermal conductivity pine $=0.151 \frac{\mathrm{~W}}{\mathrm{mK}}$
Thermal conductivity cork board $=0.0433 \frac{\mathrm{~W}}{\mathrm{mK}}$
Thermal conductivity concrete $=0.762 \frac{\mathrm{~W}}{\mathrm{mK}}$

Practice 6: A thick-walled tube (stainless steel; 0.0254 m inner diameter; 0.0508 m outer diameter; length 0.305 m) is covered with a 0.0254 m thickness of insulation. The inside-wall temperature of the pipe is 811.0 K and the outside surface temperature of the insulation is 310.8 K . What is the heat loss and the temperature at the interace between the steel and the insulation?

Material properties of stainless steel:

Thermal conductivity $=21.63 \frac{\mathrm{~W}}{\mathrm{mK}}$
Density $=7861 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Heat Capacity $=490 \frac{\mathrm{~J}}{\mathrm{~kg} \mathrm{~K}}$
Material properties of insulation:
Thermal conductivity $=0.2423 \frac{\mathrm{~W}}{\mathrm{mK}}$

Reference: Geankoplis Ex. 4.3-2 page 247, but don't do it his way_follow class methods.

