

Real Flows (continued)Other internal flows:
•rough pipes - need an additional dimensionless group ε - characteristic size of the surface roughness $\frac{\varepsilon}{D}$ - relative roughness (dimensionless roughness) $\frac{1}{\sqrt{f}} = -4.0 \log_{10} \frac{\varepsilon}{D} + \frac{4.67}{Re\sqrt{f}} + 2.28$ Colebrook correlation (Re>4000)© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)	ε	
Surface Roughness for Various ⁷⁷ Materials		
Material	$\varepsilon(mm)$	
Drawn tubing (brass,lead, glass, etc.) Commercial steel or wrought iron Asphalted cast iron Galvanized iron Cast iron Wood stave Concrete Riveted steel	1.5x10 ⁻³ 0.05 0.12 0.15 0.46 0.29 0.3-3 0.9-9	
from Denn, Process Fluid Mechanics,		

Real Flows (continued)	
Other internal flows:	
• <u>rough pipes</u> -	
•flow through noncircular conduits	
What else?	
	© Faith A. Morrison, Michigan Tech U.

