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Part I: Fluid Mechanics

More Complicated Flows

(Dimensional Analysis,
rough pipes, hydraulic
diameter, porous media)
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What about more complicated Newtonian problems?

EXAMPLE : Pressure-driven flow of
a Newtonian fluid in a rectangular
duct: Poiseuille flow
ssteady state
*well developed
*long tube
*P(0)=P,, P(L)=P,

0
cross-section A: V= 0
X v.(%,Y) ),
| vxy) H _ o
Velocity varies in

Z
2 two directions

2
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What about more complicated Newtonian problems?

Tricky step: Solving for v and 7 can be difficult

epartial differential equation in up to three variables
*boundaries may be complex

emultiple materials, multiple phases present
enon-Newtonian fluids

Solution strategies:

«advanced analytical techniques for solving partial differential

equations (PDEs) -- see Bird, et a. Transport Phenomena,
1960 or 2001, CM5100, MA4515

enumerical technigues (Ansys, Comsol Multiphysics)
*Wwww.ansys.com

« www.comsol.com/
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What about more complicated Newtonian problems?

Ansys Fluent : Solutions : Example
X19 Fluid Handling and Flow
Distribution

Streamlines depict the flow of regenerated
catalyst through a slide valve, revealing
the source of erosion problems.

“Transport and storage of gases, liquids, or slurries
represents a large capital and operating expense in
process plants. Fluent's CFD software helps you to
design for flow uniformity, balance flows in manifolds,
minimize pressure drop, design storage tanks, and
accurately size blowers, fans, and pumps. High-speed
nozzles and spray systems can be analyzed in order to
optimize performance.”

www.ansys.com

© Faith A. Morrison, Michigan Tech U.
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What about more complicated Newtonian problems?

Comsol Multiphysics 4.0a

H COMSOL HOME FRODUCTS SHOWGCASE EVENTS SUFFORT  COMMUNITY  COMPANY

COMSOL Multiphysicse

The COMSOL Multiphysics simulation software erwvironment facilitates all steps
in the modeling process — defining your geometry, meshing, specifying your
physics, solving, and then visualizing your results.

Model set-up is quick, thanks to a number of predefined physics interfaces for
applications ranging from fluid flow and heat transfer to structural mechanics
and electromagnetic analyses. Material properties, source terms and boundary
conditions can all ke arbitrary functions ofthe dependent variables

F rrutiphysics- 1 solve many cormman proflem
types. You also have the aption of choosing different physics and defining the
interdependencies yourself, Oryou can specifuyour own partial differential
eguations (PDEs) and link them with other equations and physics.

Specifications Chart
TRY HANDS-ON

CONTALCT SALES »>
Thermal Stress: A stator blade in the turbine stage of 2 jet engine is heated by the
combustion gases. To prevent the stator from melting, sir is passed through a cooling
Coming soon: the Comsol Project
5
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What about more complicated Newtonian problems?

So far:

*We've learned to set-up and sometimes solve flow
problems (conservation of mass, momentum)

Question:

*Do we always need to solve the modeling problems that
real systems present?

*Can we solve them?

6
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What about more complicated Newtonian problems?

Most industrial flows are not simple:

\
*piping Most of
*pumps these flows
emixers are
flow in an engine > impossible to
«fluidized beds solve in
flow in a packed bed (catalytic reactor) detail
*two-phase flows (extractors)
ejets (jet engines, ink-jet printing)
ecoating flows Y,
sevaporators Exception:
*heat exchangers plastics, high

viscosity flows

7
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What about more complicated Newtonian problems?

*Questions:

*Do we always need to solve the modeling problems that
real systems present? -No, not always.

?
*Can we solve them? -No, not always.

*What do we do instead? -Experiments, scale-models,
and data-correlations

*What experiments do we do?

*Small-scale pilot experiments
. that can scale to the real
Better choice,

but how? system

8
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What about more complicated Newtonian problems?

Designing the Experiments

Dimensional
similarity

= similar _
proportions pilot scale

full scale

*Dynamic
similarity o)

=) = similar "
behavior How systems behave depends

on the laws of physics.

9
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What about more complicated Newtonian problems?

GOALS of Dimensional Analysis:

To use our knowledge of physical laws (mass,
momentum, energy conservation) to guide our studies,
modeling, and experimentation on complex (real
engineering) flows

(i.e. to save us trial-and-error work)

Specifically:

To be able to design devices in which the flow is expected to be complex
To scale-up (relate) any experiments to similar flows that are not (yet)
available for experimentation

To guide the use and production of data correlations (i.e. the plotting and
reporting of experimental data)

10
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San Francisco Bay «distorted scale: the dimension in the vertical direction is 1/10th

the scale in the horizontal direction.
*US Army Corps of Engineers

eused to evaluate proposed changes to the bay such as dams
and other types of development.

Model, Sausalito,
CA.

11
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What about more complicated Newtonian problems?

Dimensional Analysis

principle: even in complex systems, the same
equations still apply:

governing continuity equation (mass conservation)
equations equation of motion (momentum conservation)

strateqy: render the governing equations dimensionless
to identify the important parameters that apply in every
situation.

—> rely on experiments and data correlations

12
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Continuity Equation

What about more complicated Newtonian problems?

Microscopic mass balance
written on an arbitrarily
shaped control volume, V,
enclosed by a surface, S

Microscopic mass balance is a
scalar equation.

ap-i-Vx a'O—i-Vy ap-l— Zapz—p
ot “ox Yoy ‘oz
Gibbs notation: Z_'D +v-Vp=—p(V-v)
t Y Y

13
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Equation of Motion

What about more complicated Newtonian problems?

Microscopic momentum
balance written on an
arbitrarily shaped control
volume, V, enclosed by a
surface, S

Gibbs notation: p <_— +v- l71_7> =-Vp+V

‘T+pg

general fluid

Gibbs notation: p (

: Vy) =—Vp+uv?v+pg

Newtonian fluid

Microscopic momentum
balance is a vector equation.

Navier-Stokes Equation

14
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Dimensional Analysis

principle: even in complex systems,
the same equations still apply:

Mass is conserved:
Continuity Equation

P
ot

+V-

Vo=-p(V-v)

Momentum is conserved:
Navier-Stokes Equation

p(%—l—\_/'V\_/j =-VP+uV?v+ pg

For a complex problem,

Which terms dominate?
How can we simplify?

Dimensional Analysis

principle: even in complex systems,
the same equations still apply:

Mass is conserved:

Continuity Equation a_p+v.

Depends on
Vp= —p(V@ how big v is

Momentum is conserved:
Navier-Stokes Equation

Depends on
how big u is

p[%ﬁ_wv\_/j?w@zwpg

For a complex problem,

Which terms dominate?
How can we simplify?

10/16/2017
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Mass is conserved:
Continuity Equation

Momentum is conserved:
Navier-Stokes Equation

Dimensional Analysis

principle: even in complex systems,
the same equations still apply:

0 Depends on
—+V-Vp= —p(V@ how big v is
ot
Depends on Deper}ds on
how big Vv is how big u is

p[\_/@j?VP@PQ

For a complex problem,

Depends on how
fast v is changing

Which terms dominate?
How can we simplify?

Depends on
how big V2v is

Mass is conserved:
Continuity Equation

Momentum is conserved:
Navier-Stokes Equation

Dimensional Analysis

principle: even in complex systems,
the same equations still apply:

D d
dp )V.@ @v@ now big 215
e v

Depends on
how big u is

Depends on
how big Vv is

how big p is

oo (P (@) =-ve G p

For a complex problem,

Depends on how
fast v is changing

Which terms dominate?
How can we simplify?

Depends on
how big V2v is

10/16/2017
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Dimensional Ana|ysis principle: even in complex systems,
the same equations still apply:

For a complex problem,

Which terms dominate?
How can we simplify? é

Variables, constants:

v,t,p,x,Y,2V,V? « Choose “typical” values (scale factors)
» Use them to scale the equations

weg « Deduce which terms dominate
P Note that once the variables are
p <_— +v- Vv) =—Vp+uV2v+pyg non-dimensionalized, the scale
at - factors and constants will form
dimensionless groups
© Faith A. Morrison, Michigan lF?ech u.
Dimensional Ana|ysis principle: even in complex systems,
the same equations still apply:
Procedure:

1. select appropriate differential equations and boundary conditions
2. select characteristic quantities with which to scale the variables,
eg.v,x, P

« characteristic quantities must be constant
* must be representative of the system

3. scale all variables in the governing equations; yields
dimensionless equation as a function of |dimension|ess groups|
The values of the dimensionless groups determine the properties of the
differential equations.

4. design scaled-down experiments to develop|data correlations|
for the system of interest
5. use data correlations to design and evaluate systems

OR

4. perform experiments on an existing system and|correlate| results
using dimensionless groups

20
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| EXAMPLE I:
i—»r Pressure-driven flow
A - cross-section A: of an incompressible
Newtonian fluid in a
r .. tube:
1—7 NOT Laminar

(not unidirectional)

esteady state
-well developed
elong tube
eincompressible

= L
V: : locally the flow is
' 3D:
i Vr
R V=|V
fluid R | g - 0
VZ roz

21
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z-component of the Navier-Stokes Equation:

o, oV, V,dv ov,
p +VI’ + z
ot or r 00 0z
oP (1 a( avzj 1%, o,
-——+ r +—=

— - —L+ +
az Hrarar )T sl 822j P

|
Choose: » Choose “typical” values (scale factors)

D = characteristic length | * Use them to scale the equations
V = characteristic velocity /¢ Deduce which terms dominate
D/V = characteristic time

pV? = characteristic pressure

22
© Faith A. Morrison, Michigan Tech U.

10/16/2017

11



Lectures 11-12 F. Morrison CM3110 10/16/2017

non-dimensional variables:
driving
time: position: velocity: force:
« tV « T « V « P
t =— r =— VvV, = —£ P = >
D D V oV
* Z * V *
I =— v, = _r g, = &
D V g
x V
V
e Choose “typical” values (scale factors)
e Use them to scale the equations
e Deduce which terms dominate . . =
© Faith A. Morrison, Michigan Tech U.

Choose “typical” values (scale factors)
Use them to scale the equations
¢ Deduce which terms dominate

z-component of the nondimensional
Navier-Stokes Equation:

24
© Faith A. Morrison, Michigan Tech U.
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Dimensionless
Navier-Stokes:

Re :—pVD
U
2
Fr:V—
gD

Dv; 6p*+ 1 W*200) + 1
Dt 3z Re V2) T g9

Two dimensionless groups appear:

Reynolds number = ratio of
inertial to viscous forces

ErouQe number_ = ratio of (“frood”)
inertial to gravity forces

If for two systems Re and Fr are the same, the two systems
are governed by the same momentum, same mass balance.

If the dimensionless boundary conditions are also the
same, the two systems are mathematically identical

= Dynamic Similarity »

© Faith A. Morrison, Michigan Tech U.

Dimensionless
Navier-Stokes:

Dimensional
similarity

= similar
proportions

*Dynamic
similarity

= similar
behavior

pilot scale

full scale

We match dimensionless
numbers Re and Fr to
achieve this

26
© Faith A. Morrison, Michigan Tech U.
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Dimensionless

1 1
Navier-Stokes: Dt = - 57" + R—e(V*Zv;) + ﬁg*

*

Dv; dp

We can also use non-dimensionalization to help us to

correlate|experimental results.

What does it
mean to
correlate?

27
© Faith A. Morrison, Michigan Tech U.

Dimensionless
Navier-Stokes:

Dv; Jap* 1 1
[ . V*Z * I
Dt 0z* +Re( UZ)+Frg

If we need to know about the operation of an apparatus and we have
the apparatus, then we can learn whatever we need to know about the
apparatus by conducting experiments.

What if we don’t have the apparatus? (we're designing one
or comparing the possible performance of one with another)

results on that;

Answer: we can build a scale model and scale up the experimental

Answer: we can use others’ results on scale models and scale up their
experimental results to our needs (no point in re-inventing the wheel)

or

Either way, this is called creating a data correlation.

28
© Faith A. Morrison, Michigan Tech U.
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Creating a Data Correlation

cross-section A:

fluid

(o]

EXAMPLE:
Pressure-driven flow
of an incompressible
Newtonian fluid in a
tube:

NOT Laminar

(not unidirectional)

esteady state
-well developed
elong tube
eincompressible

locally the flow is
3D:
Vr

V=1V,
VvV

Z/r6z
29
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Creating a Data Correlation

Laminar flow in a pipe

(from solution
to NS eqns)

To build a correlation, we start

with a simple, model flow

For laminar flow of a Newtonian fluid we can calculate the relationship
between pressure drop and flow rate. We can also calculate the
frictional force on the wall, which is related to these.

E = ff [ﬁ i E]surfaceds
N

z-component of F
force on the wall Z

T

[l
O e

= 7R?AP

4

rz

o Rd&dz

r=

30
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’ N (v,(r) from solution
to NS egns)
R2x

Qz_”vZ rdrd@ =zR*(v,)

7Z'APR4 Hagen-Poiseuille
= —— equation
8ulL

8ulL

For laminar flow in any pipe

What about turbulent flow?
© Faith A. Morrison, Michigan Tech U.

need for a given flow
rate, for example)

F :AP;Z'RZ = Q (Tells us what pump we
z R2

31

Creating a Data Correlation

Turbulent flow in a pipe

expression:
L2z
z-component of
force on the wall F = J' J.
z

but without the solution for v,(r),
where will we get this?

The frictional force on the wall is again related to this

If we cannot solve for F,, how will we get Ap as a
function of Q when the flow is turbulent?

32

© Faith A. Morrison, Michigan Tech U.
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Creating a Data Correlation

We do not know 7., but we do know that it comes from the
solution to the Navier-Stokes equation and the continuity
equation.

(we just cannot solve it because
turbulent flow is way too complicated.)

— What then?

*We could do experiments.

(but what if we do not have the system?
what if it is a design problem?)

*We (or someone else) could do experiments on a similar
system and then we could scale the results.

ahhh ... DIMENSIONAL ANALYSIS

33
© Faith A. Morrison, Michigan Tech U.

Creating a Data Correlation

Dimensionless Force

on the Wall Nondimensionalize:
position: | | velocity:
L2x
F, =] [e],_,Rdodz =l v=h
00 D V
L2z
ov «
= jj,u : Rdé@dz 7 =—
0o \Or | _ D

How shall we nondimensionalize F,?

34

© Faith A. Morrison, Michigan Tech U.
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Creating a Data Correlation

Nondimensional Wall Friction

di

F

Z

F

Z

(area)(kinetic energy)

B_ (ZﬂRL)(; pvzj

Fanning friction factor
dimensionless wall friction in a
tube

35
© Faith A. Morrison, Michigan Tech U.

Creating a Data Correlation

Non-dimensional force on the wall:

L
1D 1 %% o
f:;fR—eH( aj

Conclusion: wall friction, f, should only
correlate (vary) with Re

*

for well developed flow
expts show there is no
L/D dependence

= f = f(Re)

36
© Faith A. Morrison, Michigan Tech U.
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Creating a Data Correlation

One final question: How to measure f ?
How do we measure f ?

Answer:

We can see how to measure f by performing a
macroscopic momentum balance on a straight pipe
(incompressible fluid).

S — /\ system

—Py A g |—P, A
inlet ) outlet
fluid —
_>E —
PR = > | pvPzR?
| b |
=force on wall = -force on fluid
37

© Faith A. Morrison, Michigan Tech U.

(details
Result of macroscopic momentum balance on straight pipe: in next
lectures)
I:z = (Po - I:)L)ﬂ-Rz
I:Z
f= —*
(area)(kinetic energy)
__ Fz
= 1 2
(22RL) = pv
Fanning Friction Factor 2
1
f= (P,—P 7R’ _ (P, - PI')4
1 L)1
27RL) = pv? — | = pv?
e o) (o))
38
© Faith A. Morrison, Michigan Tech U.
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Data correlation for friction factor (AP) versus Re (flow rate) in a pipe

'
of T | T
. Materinl of for new pipes, ¢
.5 (m) —
4} 16 Drawn tubing .5 x 10
sk Commercial stesl 46X 10%%
3 Wrought iron 4.6 x 167
" Re Asphalted cast iron 12X 107
Galvanized iron 1.5 X 1071 .
Cast iron 2.6 X 164
- Wood stove tEX 10 tog X 107
g L Conerete 3 X10%to3x 107 —]
) sf Riveted steel 9 X10'to9X 107
2 o05f : |
g8 aL T
é’ ‘t \'/ critical relative
; 3 region
E . I \ 210/ turbulent flow roueﬁ)nea
N [~ |
| \ i, S 0.04 ———i
& oo /\\K 0.02——
sl laminar flow — e R R 0.01—
of \ ] e - 000 —
0.005 .
L F——"71 0,001 —
't N [ 0.0005 1
3 —J—0.0001—|
2 smooth pipe — 1 —
oo L. L .
. 34s¢53 :45534 7 345628 2 34568 2 3 4568
10 10 10 10° 10% 107

D
Reynolds number, Ng, = ML" /_\‘

Frure 2.10-3.  Friction factors for fluids inside pipes. [ Based on
Moody Chart

AS.M.E., 66, 671, (1944); Mech. Eng. 69, 1005 (J94% 4 :F;t:.
(Geankoplis, 2003)

mission.]

© Faith A. Morrison, Michigan Tech U.

Flow Regimes in a Pipe

Dye-injection needle

Re <2100 Laminar ———— [

esmooth

eone direction only I

«predictable j -l ~—cmnm
2100< Re < 4000 Transitional - T

4000 < Re Turbulent \/

schaotic - fluctuations within fluid
stransverse motions

sunpredictable - deal with average motion
emost common

40

© Faith A. Morrison, Michigan Tech U.
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What is the Fanning Friction Factor for Laminar Flow?

8l
F, =AP7R? = Fﬁ‘z Q

16

— 164 r’

o
D)\2
L— TRUE!

41
© Faith A. Morrison, Michigan Tech U.

11 | b | Smooth pipe
F [
' Laminar flow I+ Turbulent flow
I r Lo The Moody chart
L | | n
I Lo is a data
H correlation
01 + =y ¢
- (=
i 1 l i / - D165 ™y
- | ( | ]
[ | | 0.0076 | 3170} |
i Lo fo|— \Re/) | 16
%, Lo ' 1_|"311'o‘r'" | Re
0.01 + ,&#}.ﬁ_‘ - \Re ) )
C l
r Do
[
r | |
| |
- | |
| |
| |
0.00] i b i —
10° 10° 10* 10° Re 10° 10
Reference: Morrison, Faith A, An Introduction to Fluid Mechanics,
Cambridge University Press, 2013, Figure 7.18, page 532.
© Faith A. Morrison, Michigan Tech U.
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Q: What have we done so far?

A: learn to non-dimensionalize

WHY?

*When flow problems are too complex for analytical or numerical
solution, use experimental data correlations. Non-
dimensionalization guides the production and use of these data
correlations.

43
© Faith A. Morrison, Michigan Tech U.

How can we apply this approach
to a new problem?

44
© Faith A. Morrison, Michigan Tech U.
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How can we apply this approach
to a new problem?

Understanding a new system

¢ Propose a simplified system (ignoring end effects, minor complications, imposing
symmetry, etc.)

Solve (analytically, numerically)

Nondimensionalize (must choose characteristic values)

Test if identified dimensionless numbers do capture essential physics
Refine model until success is achieved

© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)

Other internal flows:
erough pipes - need an additional dimensionless group

- characteristic size of the surface roughness

& . . .
D relative roughness (dimensionless roughness)

1 e 467
—==—4.0logyo 5 + ——=+2.28

7 ReyT

\,;4\ Colebrook correlation (Re>4000)
/;/ E

© Faith A. Morrison, Michigan Tech U.
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0.1

0.01

0.001

N

|

Laminar flow

|

‘ Sand-roughened pipe

Turbulent flow

rough pipes, p
0.033

Som® 016

RUObMSSE, o BbN 1 08

0.004

oo omand  0.002
= 0.001

\

smooth pipe

10°

10°

10*

J. Nikuradse, **Stromungsgesetze in Rauhen Rohren,” VDI Forschungsh,
361 (1933); English translation, NACA Tech. Mem. 1292.

10°

10°
Re

© Faith A. Morrison, Michigan Tech U.

7

10

47

Real Flows — Rough Pipes (continued)
vd Y
/j/\g
0.1 |  Rough-commercial versus sand-roughened pipe £
f D
&0.001
o 0002
00004
+0.008
00016
— x0.033
g, |- o
b, ok i D00
0.01 I etz o
bl Y o
T
\-"""--...
e 3 4 5 5 7
10 10 10 10 R 10
e
J. Nikuradse, **Stromungsgesetze in Rauhen Rohren,” VDI Forschungsh,
361 (1933); English translation, NACA Tech. Mem. 1292.
© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Materials

Material

Surface Roughness for Various

e(mm)

Drawn tubing (brass,lead, glass, etc.)
Commercial steel or wrought iron
Asphalted cast iron

Galvanized iron

Cast iron

Wood stave

Concrete

Riveted steel

1.5x10°
0.05
0.12
0.15
0.46
0.2-.9
0.3-3
0.9-9

from Denn, Process Fluid Mechanics,
Prentice-Hall 1980; p46

© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)

Other internal flows:

erough pipes - -

What else?

© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Other internal flows:

erough pipes - O/\’{’\s

flow through noncircular conduits

Steady
Unidirectional

Long (no end effects)
Incompressible

Let's go back through the analysis
and see where we assumed the
pipe was circular

© Faith A. Morrison, Michigan Tech U.

Straight Pipe:

Result of macroscopic momentum balance on straight pipe:

E, = (P, — P)nR?

_ E
f= (area)(kinetic energy)

— - Z

- 1
(27RL) (Esz) \

Fanning Friction Factor

1
(p-r)ere _ R,

o] [5]1

f:

52

© Faith A. Morrison, Michigan Tech U.
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Straight Pipe: where did we assume circular?

Result of macroscopic momentum balance on straight pipe:

HERE FZ = (PO - PL)T[R2

F;
(area)(kinetic energy)

zZ

/ (2nRL (%pVZ)
N—

f

and HERE ———

If we change these to
general relations (good for
any shape, . ..

53
© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)

Other internal flows:

oflow through noncircular conduits g

We can show: ‘o

Drag in conduit:

Fdrag = F; = APA rosssection

Wetted surface:

(perimeter)L

© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Other internal flows:

oflow through noncircular conduits g

We can show: ‘o

Drag in conduit:

Fdrag = F; = APA rosssection

Wetted surface: Carrying out the dimensional
. analysis, we see that a good
(perimeter)L characteristic length is given
by:
44

D=Dy=— > _
perimeter

© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)

Other internal flows:

oflow through noncircular conduits g

We can show: ‘o

Drag in conduit:

Fdrag = F; = APA rosssection

Wetted surface: Carrying out the dimensional
analysis, we see that a good

(perimeter)L characteristic length is given
by:
4A
D=Dy=—"—
perimeter

It works! (for both laminar and turbulent)
© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Other internal flows:
flow through noncircular conduits

Empirically, it is found that f vs. Re correlations for circular
conduits matches the data for noncircular conduits if D is
replaced with equivalent hydraulic diameter D,,.

4(crosssectional area)

Dy = -
" wetted perimeter H
g Equwzligrrlr’:;)écrjraullc Hydraulic radius

© Faith A. Morrison, Michigan Tech U.

Real Flows (continued) oflow through noncircular conduits

Laminar flow

foyRp, = constant = Po

Po =Poiseuille number 0

Po

Circle=16

Slit=24
Ellipse=function of a, b
Triangle=13.33

+—— Laminar low ———

0.001

1! 10° 10°

© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Flow Through Noncircular Conduits - Turbulent

-l
10 ' T 1T T 11 T T TE T 1
——{Re=1E .

FIT7
| / I
from Denn, Process Fluid
Mechanics, Prentice-Hall 1980; p48

*Flow through

equilateral

triangular conduit f 10
of and Re

calculated with Dy, o Nikuradse { 1930)

+solid lines are for 3 [ ®Schilter {1923) T
circular pipes (o I

2

Lol e gl g 1ag
102 10° 0% 10° 10%
Re

Can be corrected to be more exact:
See section 7.2.2 (Morrison, p570)

Rep. ./
i =4.0 log(?f—fDH) — 040
V/oy Oldgct

© Faith A. Morrison, Michigan Tech U.

CHEMICAL & ENGINEERING NEWS fraud with chemistry P.28

g An embattled agency

5 moves forward P25

H

& Art museumn, FBI finger
|

Non-Circular Cross-
sections have
application in the new
field of microfluidics

>

© Faith A. Morrison, Michigan Tech U.

MICROFLUIDIC DEVICES
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NERVE GROWTH

mathads to devels latform for drug

to treat spinal cord injury and for axonal regeneration ressarch,

Cells (stained blue) are sels laced band with
by dashed Tha area to the right is
with strips of d

sulfate proteoglycan. The area to the left is coated with nonpat-
terned polylysine. The axons (stained green) grow only on the
sections coaled The inset is a ch of the
junction between the patterned and nonpatterned regions.

BEST OF BOTH The microbloreactor array ‘
‘combings the independence of the petr| dish
with the flow and reagent control af microfluidic
devices. Three views of the device are shown: a |
schematic of the entire device (right), an artist's
rendition of the inlet end (top keft), and a micro-

I graph of the region where two channels meet.

Chemical & Engineering News, 10
Sept 2007, p14

© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)

Other internal flows:

«flow through noncircular conduits

erough pipes - ~

© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Other internal flows:
erough pipes -

flow through noncircular conduits

What else?

a

© Faith A. Morrison, Michigan Tech U.

Real Flows (continued)

Other internal flows:
erough pipes -

flow through noncircular conduits

flow through a packed bed

Commonly used as

* Reactors
e Separators
(distillation columns, absorbers) A

© Faith A. Morrison, Michigan Tech U.
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Real Flows (continued)

Other internal flows:
flow through a packed bed

Understanding a new system

« Propose a simplified system (ignoring end effects, minor complications, imposing
symmetry, etc.)

* Solve (analytically, numerically)

* Nondimensionalize (must choose characteristic values)

« Test if identified dimensionless numbers do capture essential physics

« Refine model until success is achieved

© Faith A. Morrison, Michigan Tech U.

Flow Through Packed Beds

© Faith A. Morrison, Michigan Tech U.
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Flow Through Packed Beds

Hypothesis:

Flow through a packed bed is
like flow through any other non-
circular conduit

\.(b

voids

—

N <4

(see Example 7.16,
page 564)

' ‘ Use Hydraulic Diameter
44,6
S

© Faith A. Morrison, Michigan Tech U.

Flow Through Packed Beds

Hypothesis:

Flow through a packed bed is
like flow through any other non-
circular conduit

44, 4e

# (A -8a,

& = void fraction
a,, = specific surface area of the packing

vy = superficial velocity= T
Ap\ Dye? pVDy
Jigy = =2 2 Rep, =——
L ) 2pvg U

(see Example 7.16, page 564)

o

Dy = = (see text for details)

Does it work?

© Faith A. Morrison, Michigan Tech U.
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Flow Through Packed Beds

100 T
. o Ergun
| a4 Marcom
.th. I % Burke and Plummer
| | @ Oman and Watson
| = Ergun correlation
10 |
14
0.1 .
0.1 | 10 100 1000 10
Ren” Ergun Equation
Friction factor/Re number
100/3 + 1.75 — relationship for flow
Rep 3 Dy through packed beds
H
© Faith A. Morrison, Michigan Tech U.
Flow Through Packed Beds
Hypothesis: Ha L”» !
Flow through a packed bed is ﬁ il
like flow through any other non- w )
circular conduit
Ergun Equation
Friction factor/Re number 100/3 + 1.75 —
relationship for flow through Re 3 Dy
packed beds Dy
. Ap\ Dy e? pVDy
=(— Rep, =——
(see text for details) fou ( = >2pv§ Dy P
(see Example 7.16, page 564) © Faith A. Morrison, Michigan Tech U.
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10
f Dy k
1 - —Ergun correlation ———
‘\ i gu
———slit
0.1 pipe
triangle smooth and &
rough pipes D
0.05
e 0.02
0.01 0.005
0.001
| 0.0002
< 0.000001
«—— Laminar flow Turbulent flow —»
0.001 t i
10! 10° 10° 10* 10° 10°
Re,
Morrison, An Introduction to Fluid H
Mechanics, Cambridge, 2013 © Faith A. Morrison, Michigan Tech U.

For flow through packed beds, in - All Flow Regimes
laminar flow the flow is like flow
through an irregular cross section
|

fDH k
1 —Ergun correlation —————

———slit

0.1 pipe
triangle smooth and &
rough pipes D
0.05
—— 0.02
0.01 0.005
0.001
| 0.0002
< 0.000001
<«—— Laminar flow Turbulent flow —»
0.001 ; 1
10! 10° 10° 10* 10° Re 10°
Morrison, An Introduction to Fluid Dy
Mechanics, Cambridge, 2013 © Faith A. Morrison, Michigan Tech U.
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For flow through packed beds, in - All Flow Regimes

laminar flow the flow is like flow
through an irregular cross section —  While in turbulent flow, the
| passage is like through

fDH \ extremely rough pipes
\
1 —\ —Ergun correlation —————

\‘\ i |
———slit
0.1 pipe :
triangle smooth and &
rough pipes D
0.05
e 0.02
0.01 0.005
0.001
| 0.0002
< 0.000001
«—— Laminar flow Turbulent flow —»
0.001 t i
10! 10° 10° 10* 10° 10°
Re,
Morrison, An Introduction to Fluid H
Mechanics, Cambridge, 2013 © Faith A. Morrison, Michigan Tech U.
Summary

Other internal flows:
erough pipes -

flow through noncircular conduits

flow through a packed bed

Commonly used as

* Reactors
e Separators
(distillation columns, absorbers) - 1 © Faith A. Morrison, Michigan Tech U.
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Summary

Complex flows are governed by the same physics as simple flows,
but the math (programming) is harder

We can leverage our knowledge about the physics through
Dimensional Analysis (DA)

For a complex problem,

Which terms dominate? I
How can we simplify? ‘9—”/
Egﬂl

DA reveals the dimensionless numbers that govern dynamic
similarity, e.g. Re, Fr

Experiments on geometrically and dynamically similar systems can
be used to correlate results, e.g. Moody plot, and to perform scale-up,
e.g. pilot plant studies.

© Faith A. Morrison, Michigan Tech U.

Sum Mary (continued)

In addition to using the data correlations of others, we can use
Dimensional Analysis to analyze new, never-before-studied systems
(like in a plant, or novel device design)

Understanding a new system

» Propose a simplified system (ignoring end effects, minor complications,
imposing symmetry, etc.)

» Solve (analytically, numerically)

* Nondimensionalize (must choose characteristic values)

» Test if identified dimensionless numbers do capture essential
physics

* Refine model until success is achieved

We discussed how this procedure worked for: (1) rough pipes, (2) noncircular
cross sections, (3) flow through packed beds (all internal flows, Chapter 7).

We will also use this procedure for external flows: skydiving, automotive drag,
etc. (Chapter 8)

© Faith A. Morrison, Michigan Tech U.
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CM3110
Transport |
Part I: Fluid Mechanics

Macroscopic
Momenitum Balances

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University
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