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CM3110 
Transport I
Part I:  Fluid Mechanics

1

More Complicated Flows II:  
External Flow
(or applying fluid-mechanics problem-
solving to a new category of flows)

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University

More complicated flows II:  From Nice to Powerful

© Faith A. Morrison, Michigan Tech U.

Learning to solve one particular problem 
(or a group of related problems)

Nice:

Solving never-before-solved problems.

Powerful:
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A real flow problem 
(external).  What is the 
speed of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

More complicated flows II

3

A real flow problem 
(external).  What is the 
speed of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

Can we use anything we 
learned from flow-through-
conduits to tell us how to 
solve this new problem?

More complicated flows II

4
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More complicated flows II

So far we have talked about internal flows

•ideal flows  (Poiseuille flow in a tube)

•real flows  (turbulent flow in a tube)

Strategy for handling real flows: Dimensional analysis and data 
correlations, Re

How did we arrive at correlations? non-Dimensionalize ideal flow; use to 
guide expts on similar non-ideal flows; 
take data; develop empirical 
correlations from data

What do we do with the correlations? use in MEB; calculate pressure-drop 
flow-rate relations

© Faith A. Morrison, Michigan Tech U.

Flow through Conduits

5

F. A. Morrison, An Introduction to Fluid Mechanics, Cambridge 
University Press 2013. © Faith A. Morrison, Michigan Tech U.

6
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© Faith A. Morrison, Michigan Tech U.

Solve a wide variety 
of practical problems 
with data correlations.

Pumping loops, piping networks, pump 
characteristic curves, non-circular cross 

sections, flow through porous media, etc.

7F. A. Morrison, An Introduction to Fluid Mechanics, Cambridge 
University Press 2013.

A real flow problem 
(external).  What is the 
speed of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

We can apply the 
conduit process to this 

new problem.

More complicated flows II

8
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A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.

Gravity

Drag
(fluid force)

More complicated flows II

9

Apply the physics:

(Morrison, Example 8.1)

A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

Gravity

Drag
(fluid force)

The fluids part of 
the problem is, 

what is ?

(drag in flow around an obstacle)

More complicated flows II

10

At terminal velocity 0

0
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© Faith A. Morrison, Michigan Tech U.
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More complicated flows II

So far we have talked about internal flows

•ideal flows  (Poiseuille flow in a tube)

•real flows  (turbulent flow in a tube)

Strategy for handling real flows: Dimensional analysis and data 
correlations, Re

How did we arrive at correlations? non-Dimensionalize ideal flow; use to 
guide expts on similar non-ideal flows; 
take data; develop empirical 
correlations from data

What do we do with the correlations? use in MEB; calculate pressure-drop 
flow-rate relations

Flow through Conduits

A real flow problem 
(external).  What is the speed 
of a sky diver?

(Morrison, Example 8.1)

Gravity

Drag
(fluid force)

The fluids part of 
the problem is, 

what is ?

(drag in flow around an obstacle)

More complicated flows II

At terminal velocity 0

0
Can we address 
this new problem 
(new to us) . . . 

By using the same 
approach as used for 

pipe flow?

calculate drag – free-stream velocity 
relations

Now, we will talk about external flows

•ideal flows  (flow around a sphere)

•real flows  (turbulent flow around a sphere, sky diver, other obstacles)

Strategy for handling real flows: Dimensional analysis and data 
correlations

How did we arrive at correlations? non-Dimensionalize ideal flow; use to 
guide expts on similar non-ideal flows; 
take data; develop empirical 
correlations from data

What do we do with the correlations?

© Faith A. Morrison, Michigan Tech U.

Flow around ObstaclesMore complicated flows II

12
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calculate drag – free-stream velocity 
relations

Now, we will talk about external flows

•ideal flows  (flow around a sphere)

•real flows  (turbulent flow around a sphere, sky diver, other obstacles)

Strategy for handling real flows: Dimensional analysis and data 
correlations

How did we arrive at correlations? non-Dimensionalize ideal flow; use to 
guide expts on similar non-ideal flows; 
take data; develop empirical 
correlations from data

What do we do with the correlations?

© Faith A. Morrison, Michigan Tech U.

Flow around ObstaclesMore complicated flows II

13

Let’s try

© Faith A. Morrison, Michigan Tech U.

14

What is the steady state velocity 
field around a sphere dropping 
through an incompressible 
Newtonian fluid
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flow

Steady flow of an 
incompressible, Newtonian 

fluid around a sphere

(equivalent to 
sphere falling 
through a liquid)

© Faith A. Morrison, Michigan Tech U.

(Morrison, Example 8.2)
15

What is the steady state velocity 
field when an incompressible, 
Newtonian fluid flows around a 
stationary sphere?  What is the 
drag on the sphere? The 
upstream velocity is .

, ,



flow

Steady flow of an 
incompressible, 

Newtonian fluid around a 
sphere

•spherical coordinates

•symmetry in the 	direction

•calculate and drag on sphere

•upstream 

(equivalent to 
sphere falling 
through a 
liquid)

© Faith A. Morrison, Michigan Tech U.

(Morrison, Example 8.2)
16
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© Faith A. Morrison, Michigan Tech U.

17

, ,



flow

Slow flow around a sphere (Stokes Flow)

Continuity Equation (mass)

 vv
t



 

© Faith A. Morrison, Michigan Tech U.

18

Equation of Motion (momentum)

V

n̂dS
S

gvPvv
t

v  





 

 2 Newtonian 

fluid

Navier-Stokes Equation

Microscopic Balances
(Microscopic balances on an 
arbitrary control volume)

Slow flow around a sphere (Stokes Flow)
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© Faith A. Morrison, Michigan Tech U.

19

www.chem.mtu.edu/~fmorriso/cm310/Navier.pdf

Continuity (spherical coordinates)

Slow flow around a sphere (Stokes Flow)

© Faith A. Morrison, Michigan Tech U.

20

www.chem.mtu.edu/~fmorriso/cm310/Navier.pdf

Navier-Stokes    (spherical coordinates)

Slow flow around a sphere (Stokes Flow)
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Gravity

̂

̂ cos ̂ sin ̂

© Faith A. Morrison, Michigan Tech U.

(Morrison, Example 8.2)

(See inside back cover; 
do some algebra)

cos ̂ sin ̂

cos
sin
0

, ,



flow 21

Slow flow around a sphere (Stokes Flow)

Steady flow of an 
incompressible, 
Newtonian fluid 

around a sphere

gvPvv
t

v  





 

 2

Equation of Motion:

© Faith A. Morrison, Michigan Tech U.

Because the flow is 
not unidirectional, we 
have to consider the 
left-hand-side of the 
Navier-Stokes

(do we have to?)

22

Slow flow around a sphere (Stokes Flow)
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Steady flow of an 
incompressible, 
Newtonian fluid 

around a sphere

Creeping Flow

gvPvv
t

v  





 

 2

steady 
state

neglect 
inertia

SOLVE

BC1:  no slip at sphere surface
BC2:  velocity goes to far from sphere

Eqn of 
Motion:

Eqn of 
Continuity:

 
0

sin

sin

11 2

2 
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vr

r
r

© Faith A. Morrison, Michigan Tech U.

cos
sin
0

,

23

Slow flow around a sphere (Stokes Flow)

SOLUTION:  Creeping Flow 
around a sphere
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2

3
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all the stresses can be 
calculated from	
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1
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3
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2
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3
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3

3

0

Morrison, Example 8.2; complete solution steps in 
Denn, Process Fluid Mechanics (Prentice Hall, 1980)

© Faith A. Morrison, Michigan Tech U.

̃

Π ̳ ̃

24

(see the usual handout 
for stress components)

Slow flow around a sphere (Stokes Flow)

(we neglected inertia, i.e. 
LHS of Navier-Stokes)
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SOLUTION:  Velocity Field for 
Creeping Flow around a sphere

© Faith A. Morrison, Michigan Tech U.

• No slip at the walls 
of the sphere

• Far from the sphere 
the flow does not 
feel the presence of 
the sphere

25

Slow flow around a sphere (Stokes Flow)

What is the total 
z-direction force 
on the sphere?

© Faith A. Morrison, Michigan Tech U.

To get the force on the 
sphere (drag), we ask,

26

⋅ Π 	

, ,



flow

Slow flow around a sphere (Stokes Flow)
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© Faith A. Morrison, Michigan Tech U.

To get the force on the 
sphere, we ask,

27

⋅ Π 	

, ,



flow

Let’s 
try What is the total 

z-direction force 
on the sphere?

Slow flow around a sphere (Stokes Flow)

© Faith A. Morrison, Michigan Tech U.

28

⋅ Π 	

, ,



flow

Slow flow around a sphere (Stokes Flow)
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© Faith A. Morrison, Michigan Tech U.

29

⋅ Π 	

, ,



flow

Slow flow around a sphere (Stokes Flow)

?

surface ?

?

Π ?

⋅ Π ?

evaluate at the 
surface of the 

sphere

 
2

2

0 0

ˆ sinr
r R

F e PI R d d
 

   


     

SOLUTION:  Creeping Flow 
around a sphere

What is the total z-direction 
force on the sphere?

total stress 
at a point in 

the fluid

vector stress on a 
microscopic surface of 

unit normal ̂

integrate over 
the entire 

sphere surface

total vector 
force on 
sphere

total z-direction 
force on the 

sphere ⋅

© Faith A. Morrison, Michigan Tech U.

	̃

30

Slow flow around a sphere (Stokes Flow)



Lecture 14 F. Morrison CM3110 10/25/2017

16

© Faith A. Morrison, Michigan Tech U.

31

, ,



flow

Slow flow around a sphere (Stokes Flow)

⋅ Π 	

© Faith A. Morrison, Michigan Tech U.

32

, ,



flow

Slow flow around a sphere (Stokes Flow)

⋅ Π 	

, sin

3 sin
2

0
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© Faith A. Morrison, Michigan Tech U.

33

, ,



flow

Slow flow around a sphere (Stokes Flow)

⋅ Π 	

, sin

3 sin
2

0

Note:

, , are a function of ,

(see text page 614)

34ˆ 2 4
3z ze F F R g Rv Rv        

Force on a sphere (creeping flow limit)

buoyant 
force

comes from pressure

friction drag

kinetic termsstationary terms 
0 when 0

Stokes law:

comes from shear stresses

form drag

See Morrison, p613-17
© Faith A. Morrison, Michigan Tech U.

kinetic force ≡ 6(this is famous)

34

Slow flow around a sphere (Stokes Flow)
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Force on a sphere (creeping flow limit)

34ˆ 2 4
3z ze F F R g Rv Rv        

buoyant 
force

comes from pressure

friction drag

kinetic termsstationary terms 
0 when 0

Stokes law:

comes from shear stresses

form drag

See Morrison, p613-17
© Faith A. Morrison, Michigan Tech U.

kinetic force ≡ 6
35

Slow flow around a sphere (Stokes Flow)

(this is famous)

A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

Gravity

Drag
(fluid force)

More complicated flows II Back to our 
problem:

36
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A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

Gravity

Drag
(fluid force)

0

More complicated flows II

We can get this from the 
creeping flow solution

37

̂ ⋅
4
3

6

Creeping flow drag:

A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

0

0
0

4
3

0
0

4
3

6

0
0
0

18

More complicated flows II

Gravity

Drag
(fluid force)

38

From the creeping 
flow solution

(see inside front cover)
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A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

18 14,000

More complicated flows II

Gravity

Drag
(fluid force)

39

From the creeping 
flow solution

A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

18 14,000

(wrong)

More complicated flows II

Gravity

Drag
(fluid force)

40

(oh well, nice try)

From the creeping 
flow solution
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A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

18 14,000

(wrong)

But, wait! . . .

More complicated flows II

Gravity

Drag
(fluid force)

41

From the creeping 
flow solution

A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.1)

More complicated flows II

0

Gravity

Drag
(fluid force)

42

How about if we do 
dimensional analysis, 

measure data correlations 
for non-creeping flow, and 
then use the correlations to 

determine ?
calculate drag - superficial velocity 
relations

Now, we will talk about external flows

•ideal flows  (flow around a sphere)

•real flows  (turbulent flow around a sphere, other obstacles)

Strategy for handling real flows: Dimensional analysis and data 
correlations

How did we arrive at correlations? non-Dimensionalize ideal flow; use to 
guide expts on similar non-ideal flows; 
take data; develop empirical 
correlations from data

What do we do with the correlations?

Flow around ObstaclesMore complicated flows II
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Steady flow of an 
incompressible, Newtonian 

fluid around a sphere

Turbulent Flow
**2******

*

* 1

Re

1
g

Fr
vPvv

t

v














•Nondimensionalize eqns of change:

•Nondimensionalize eqn for , :

define dimensionless 
kinetic force












2

2
,

2
1

4
v

D

F
Cf kineticz

D



•conclude f=f(Re) or 
CD=CD(Re)

drag 
coefficient

•take data, plot, develop correlations

© Faith A. Morrison, Michigan Tech U.

43

Fast flow around a sphere (dimensional analysis)

Steady flow of an 
incompressible, Newtonian 

fluid around a sphere

Creeping Flow

Creeping flow: , Stokes law

© Faith A. Morrison, Michigan Tech U.

6

4
1
2

24

44

What does this look like 
in Creeping flow?

(we have the solution)

From the creeping 
flow solution

Fast flow around a sphere (dimensional analysis)



Lecture 14 F. Morrison CM3110 10/25/2017

23

© Faith A. Morrison, Michigan Tech U.

(see Example 8.4)
45

How do we apply to 
Turbulent flow?

(we need to take data)

Steady flow of an 
incompressible, Newtonian 

fluid around a sphere

Turbulent Flow

Turbulent flow: Calculate from terminal velocity of a falling sphere 
(see Figure 8.13)

all 
measurable 
quantities

	 At terminal speed the net 
weight is exactly 

balanced by the viscous 
retarding force. 

4
3
	

Fast flow around a sphere (dimensional analysis)

•take data, plot, develop correlations

© Faith A. Morrison, Michigan Tech U.

46

Data of Re ?

Steady flow of an 
incompressible, Newtonian 

fluid around a sphere

Turbulent Flow

Steady flow of an 
incompressible, Newtonian 

fluid around a sphere

Creeping Flow

Fast flow around a sphere (dimensional analysis)
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McCabe et al., Unit Ops of Chem 
Eng, 5th edition, p147

Re

24

graphical correlation

© Faith A. Morrison, Michigan Tech U.

47

Fast flow around a sphere (dimensional analysis)

Steady flow of an incompressible, Newtonian 
fluid around a sphere

Re

24

McCabe et al., Unit Ops of Chem 
Eng, 5th edition, p147 © Faith A. Morrison, Michigan Tech U.

We see the 
creeping-flow result 

for Re 2

48

Steady flow of an incompressible, Newtonian 
fluid around a sphere

graphical correlation

Fast flow around a sphere (dimensional analysis)
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Steady flow of an incompressible, Newtonian 
fluid around a sphere

BSL, p194

correlation equations

•use correlations in engineering practice

•particle settling

•entrained droplets in distillation columns

•particle separators

•drop coalescence 

(See Denn, Bird et al., Perry’s)

© Faith A. Morrison, Michigan Tech U.

creeping
24

0.10

vortices 18.5 . 2 500	
wake	flow 0.44 500 200,000

Dr. Morrison developed a 
single, combined correlation

49
Denn, Process Fluid Mechanics, 1980
Bird, Stewart, Lightfoot, Transport Phenomena, 1960 and 2006

Fast flow around a sphere (dimensional analysis)

© Faith A. Morrison, Michigan Tech U.
F. A. Morrison An Introduction to Fluid Mechanics, 
Cambridge 2013, Figure 8.13, p625

50

Fast flow around a sphere (dimensional analysis)
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A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.5)

0

0
0

0
0

2

0
0
0

4
3

		

More complicated flows II

Gravity

Drag
(fluid force)

51

(Instead of creeping 
flow, use Re for 
noncreeping flow)

Applicable in   
NON-creeping flow

Gravity

Drag
(fluid force)

A real flow problem 
(external).  What is the speed 
of a sky diver?

© Faith A. Morrison, Michigan Tech U.
(Morrison, Example 8.5)

107

More complicated flows II

4
3

		

Right!

52

(or close, anyway)
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© Faith A. Morrison, Michigan Tech U.

More complicated flows II

Solving never-before-solved problems.

Powerful:

Left to explore:

• What is non-creeping flow like?

• Viscosity dominates in creeping flow, what about 
the flow where inertia dominates?

• What about mixed flows (viscous+inertial)?

• What about really complex flows (curly)?

(boundary layers)

(potential flow)

(boundary layers)

(vorticity; irrotational+circulation)

53

© Faith A. Morrison, Michigan Tech U.
F. A. Morrison An Introduction to Fluid Mechanics, 
Cambridge 2013, Figure 8.23, p650

54

Fast flow around a sphere (dimensional analysis)
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© Faith A. Morrison, Michigan Tech U.

55

Fast flow around a sphere (dimensional analysis)

a)

b)

c)

d)

e)

© Faith A. Morrison, Michigan Tech U.

56

One more essential topic in Fluid 
Mechanics:  Boundary Layers


