

Complex Heat Transfer – Dimension	al Analysis			
Experience with Dimensional Analysis thus far:				
•Flow in pipes at all flow	w rates (laminar and turbulent) Solution: Navier-Stokes, Re, Fr, L/D , dimensionless wall force = f ; $f = f(\text{Re}, L/D)$			
•Rough pipes	Solution: add additional length scale; then nondimensionalize			
•Non-circular conduits	Solution: Use hydraulic diameter as the length scale of the flow to nondimensionalize			
•Flow around obstacles	s (spheres, other complex shapes Solution: Navier-Stokes, Re, dimensionless drag = C_D ; $C_D = C_D(\text{Re})$			
 Boundary layers 	Solution: Two components of velocity need independent lengthscales			
	6			
	© Faith A. Morrison, Michigan Tech U.			

Complex Heat Transfer – Dimensional Analy	vsis				
Now, move to heat tran	sfer:				
•Forced convection heat trans Solution: ?	sfer from fluid to wall				
•Natural convection heat tran Solution: ?	sfer from fluid to wall				
•Radiation heat transfer from solid to fluid Solution: ?					
bulk fluid	solid wall				
		9			
	© Faith A. Morrison, Mich	igan Tech U.			

Complex Heat Transfer – Dimensiona	l Analysis				
Now, move to heat transfer: •Forced convection heat transfer from fluid to wall Solution: ?					
 Natural convection hea Solut 	We have already started				
•Radiation heat transfer Solut	using the <u>results</u> /technique of dimensional analysis	es			
bulk	through defining the heat transfer coefficient, h				
	© Faith A. Morrison, Michigan T	ech U.			

Example of <i>partial</i> so	olution to Homework (bring to	o tests)		
laminar flow in pipes	$Nu_a = \frac{h_a D}{k} = 1.86 \left(\operatorname{Re} \operatorname{Pr} \frac{D}{L} \right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$	Re<2100, (RePrD/L)>100, horizontal pipes, eqn 4.5-4, page 238; all properties evaluated at the temperature of the bulk fluid except μ_w which is evaluated at the wall temperature.	(T _{bulk} mean)	
turbulent flow in smooth tubes	$Nu_{im} = \frac{h_{im}D}{k} = 0.027 \mathrm{Re}^{0.8} \mathrm{Pr}^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$	Re>6000, 0.7 <pr <16,000,<br="">L/D>60, eqn 4.5-8, page 239; all properties evaluated at the mean temperature of the bulk fluid except µ, which is evaluated at the wall temperature. The mean is the average of the inlet and outlet bulk temperatures; not valid for liquid metals.</pr>		
air at 1atm in turbulent flow in pipes	$h_{im} = \frac{3.52V(m/s)^{0.8}}{D(m)^{0.2}}$ $h_{im} = \frac{0.5V(ft/s)^{0.8}}{D(ft)^{0.2}}$	equation 4.5-9, page 239		
water in turbulent flow in pipes	$h_{im} = 1429 (1 + 0.0146T(^{\circ}C)) \frac{V(m/s)^{0.8}}{D(m)^{0.2}}$ $h_{im} = 150 (1 + 0.011T(^{\circ}F)) \frac{V(ft/s)^{0.8}}{D(ft)^{0.2}}$	4 < T(°C)<105, equation 4.5- 10, page 239		
42 © Faith A. Morrison, Michigan Tech U.				

 Practice 5: A cold-storage room is constructed of an inner layer of pine (thickness = 12.7 mm), a middle layer of cork board (thickness = 101.6 mm), and an outer layer of concrete (thickness = 76.2 mm). The inside wall surface temperature is 297.1 K. What is the heat loss per square meter through the walls and what is the temperature at the interface between the wood and the cork board? Material properties: Thermal conductivity pine = $0.151 \frac{W}{mK}$ Thermal conductivity cork board = $0.0433 \frac{W}{mK}$ Thermal conductivity concrete = $0.762 \frac{W}{mK}$

© Faith A. Morrison, Michigan Tech U.

