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CM3110 
Transport I
Part II:  Heat Transfer

1

Complex Heat 
Transfer –
Dimensional Analysis

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University

© Faith A. Morrison, Michigan Tech U.
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Examples of (simple, 1D) Heat Conduction

(what have we been up to?)
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But these are 
highly simplified 

geometries

Examples of (simple, 1D) Heat Conduction

How do we handle complex geometries, 
complex flows, complex machinery?

© Faith A. Morrison, Michigan Tech U.
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Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result
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(Answer:  Use the same techniques we 
have been using in fluid mechanics)

Complex Heat Transfer – Dimensional Analysis

5

Experience with Dimensional Analysis thus far:

© Faith A. Morrison, Michigan Tech U.

•Rough pipes

•Non-circular conduits

•Flow around obstacles (spheres, other complex shapes

Solution:  Navier-Stokes, Re, Fr, / , 
dimensionless wall force 	 ; Re, /

Solution:  Navier-Stokes, Re, dimensionless 
drag 	 ; 	 Re

Solution:  add additional length scale; then 
nondimensionalize

Solution:  Use hydraulic diameter as the length 
scale of the flow to nondimensionalize

Solution:  Two components of velocity 
need independent lengthscales

•Flow in pipes at all flow rates (laminar and turbulent)

•Boundary layers

Complex Heat Transfer – Dimensional Analysis

6
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Turbulent flow (smooth pipe) Rough pipe

Around obstaclesNoncircular cross section

f

Re

Spheres, 
disks, 
cylinders
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© Faith A. Morrison, Michigan Tech U.

Turbulent flow (smooth pipe) Rough pipe

Around obstaclesNoncircular cross section

f

Re

Spheres, 
disks, 
cylinders

These have been 
exhilarating victories 

for dimensional 
analysis
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Now, move to heat transfer:
•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

solid wallbulk fluid solid wall

Complex Heat Transfer – Dimensional Analysis

9

solid wallbulk fluid

© Faith A. Morrison, Michigan Tech U.

Now, move to heat transfer:
•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

We have already started 
using the results/techniques 

of dimensional analysis 
through defining the heat 

transfer coefficient, 

Complex Heat Transfer – Dimensional Analysis
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solid wallbulk fluid

© Faith A. Morrison, Michigan Tech U.

Now, move to heat transfer:
•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

We have already started 
using the results/techniques 

of dimensional analysis 
through defining the heat 

transfer coefficient, 

(recall that we did this in fluids too:  
we used the Re correlation 

(Moody chart) long before we knew 
where that all came from)

Complex Heat Transfer – Dimensional Analysis

11
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x

bulkT

wallT

wallx

solid wallbulk fluid

wallbulk TT 

The temperature variation near-wall region is caused by 
complex phenomena that are lumped together into the heat 

transfer coefficient, h

© Faith A. Morrison, Michigan Tech U.

Handy tool:  
Heat Transfer Coefficient

	in	solid

	in	
liquid
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x
bulk wall

q
h T T

A
 

The flux at the wall is given by the empirical expression known as 

Newton’s Law of Cooling

This expression serves as the definition of 
the heat transfer coefficient.

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

depends on:

•geometry
•fluid velocity
•fluid properties
•temperature difference

14

depends on:

•geometry
•fluid velocity
•fluid properties
•temperature difference

© Faith A. Morrison, Michigan Tech U.

To get values of for various 
situations, we need to measure 

data and create data correlations 
(dimensional analysis)

x
bulk wall

q
h T T

A
 

The flux at the wall is given by the empirical expression known as 

Newton’s Law of Cooling

This expression serves as the definition of 
the heat transfer coefficient.

Complex Heat Transfer – Dimensional Analysis
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•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

• The functional form of will be 
different for these three situations 
(different physics)

• Investigate simple problems in each 
category, model them, take data, 
correlate

Complex Heat transfer Problems to Solve:

Complex Heat Transfer – Dimensional Analysis

15

© Faith A. Morrison, Michigan Tech U.

Following procedure familiar from pipe flow, 

• What are governing equations?  

• Scale factors (dimensionless numbers)? 

• Quantity of interest? 

Answer:  Heat flux at the wall 

Chosen problem:  Forced Convection Heat Transfer
Solution:  Dimensional Analysis

Complex Heat Transfer – Dimensional Analysis

16
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General Energy Transport Equation
(microscopic energy balance)

V

n̂dS
S

As for the derivation of the microscopic momentum balance, 
the microscopic energy balance is derived on an arbitrary 
volume, V, enclosed by a surface, S. 

STkTv
t
T

Cp 





 

 2ˆ

Gibbs notation:

see handout for 
component notation

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

17

General Energy Transport Equation
(microscopic energy balance; in the fluid)

see handout for 
component notation

rate of change

convection

conduction 
(all directions)

source

fluid velocity must satisfy 
equation of motion, 
equation of continuity

(energy 
generated 

per unit 
volume per 

time)

STkTv
t

T
Cp 






 

 2ˆ

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

18
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Note:  this handout is on the web:  
www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

Equation of energy for Newtonian fluids of constant density, , and
thermal conductivity, k, with source term (source could be viscous dissipation, electrical
energy, chemical energy, etc., with units of energy/(volume time)).

CM310 Fall 1999 Faith Morrison

Source:  R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Processes, Wiley, NY,
1960, page 319.

Gibbs notation (vector notation)
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Cylindrical (rz) coordinates:
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Spherical (r) coordinates:
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19

R1

Example:  Heat flux in a cylindrical shell

Assumptions:
•long pipe
•steady state
•k = thermal conductivity of wall
•h1, h2 = heat transfer coefficients

What is the steady state 
temperature profile in a cylindrical 
shell (pipe) if the fluid on the 
inside is at Tb1 and the fluid on 
the outside is at Tb2? (Tb1>Tb2)

Cooler fluid 
at Tb2

Hot fluid at Tb1

R2

r

** REVIEW ** REVIEW **

F
o

rc
ed

-c
o

n
ve

ct
io

n
 h

ea
t 

tr
an

sf
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© Faith A. Morrison, Michigan Tech U.
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Consider:  Heat-transfer to from flowing fluid inside of a 
tube – forced-convection heat transfer

T1= core bulk temperature
To= wall temperature

T(r,,z) = temp distribution 
in the fluid

© Faith A. Morrison, Michigan Tech U.

In principle, with the right math/computer 
tools, we could calculate the complete 
temperature and velocity profiles in the 

moving fluid.

Now:  How do develop correlations for h?

21

How is the heat transfer 
coefficient related to the full 

solution for T(r,,z) in the fluid?

What are governing equations?  

Microscopic energy balance plus Navier-Stokes, 
continuity

Scale factors?  

Re, Fr, L/D plus whatever comes from the rest of the 
analysis

Quantity of interest (like wall force, drag)?

Heat transfer coefficient

The quantity of interest in 
forced-convection heat 

transfer is h

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

22
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),,( zrT 

Unknown function:

© Faith A. Morrison, Michigan Tech U.

is an 
unknown function

Complex Heat Transfer – Dimensional Analysis

Assume:  
• symmetry
• Long tube

23

© Faith A. Morrison, Michigan Tech U.

⋅ 	

2

At the boundary, (Newton’s Law of Cooling is the  boundary condition)

We can calculate the total heat transferred from in the fluid:

We need 
in the fluid

Total heat 
conducted to the 

wall from the 
fluid 

Total heat 
flow through 
(at) the wall 

in terms of h

Complex Heat Transfer – Dimensional Analysis

24
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2 	 ̂ ⋅ 	

Equate these two:  Total heat flow through the wall

2 	 	

Total heat flow at the wall 
in terms of h

Total heat conducted to the 
wall from the fluid 

Complex Heat Transfer – Dimensional Analysis

25

© Faith A. Morrison, Michigan Tech U.

2 	 ̂ ⋅ 	

Equate these two:  Total heat flow through the wall

2 	 	

Now, non-dimensionalize
this expression

Complex Heat Transfer – Dimensional Analysis

26
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non-dimensional variables:

position:
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© Faith A. Morrison, Michigan Tech U.

Non-dimensionalize 

Complex Heat Transfer – Dimensional Analysis
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© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

28
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This is a function of Re
through fluid distribution

Complex Heat Transfer – Dimensional Analysis
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Complex Heat Transfer – Dimensional Analysis

30



Lectures 4-5 CM3110 Heat Transfer 11/27/2017

16

no free surfaces









D

L
NuNu ,FrPr,Re,

© Faith A. Morrison, Michigan Tech U.

According to our dimensional analysis calculations, the 
dimensionless heat transfer coefficient should be found to 

be a function of four dimensionless groups:

Now, do the experiments.

Peclet number

Pe ≡

Prandtl number

Pr ≡

Complex Heat Transfer – Dimensional Analysis
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three

© Faith A. Morrison, Michigan Tech U.

Forced Convection Heat Transfer

Now, do the experiments.

• Build apparatus (several actually, with different D, L)

• Run fluid through the inside (at different ; for different fluids , , , )

• Measure on inside; on inside

• Measure rate of heat transfer, 

• Calculate :  

• Report values in terms of dimensionless correlation:

Nu Re, Pr,
It should only be a function of 
these dimensionless numbers 
(if our Dimensional Analysis is 

correct…..)

Complex Heat Transfer – Dimensional Analysis

32
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Correlations for Forced Convection Heat Transfer Coefficients
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Geankoplis, 4th ed. eqn
4.5-4, page 260

Complex Heat Transfer – Dimensional Analysis
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Correlations for Forced Convection Heat Transfer Coefficients
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Geankoplis, 4th ed. eqn
4.5-4, page 260

If dimensional analysis is 
right, we should get a 

single curve, not multiple 
different curves 

depending on:  , , , .

Complex Heat Transfer – Dimensional Analysis

34
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Correlations for Forced Convection Heat Transfer Coefficients

1

10

100

1000

10000

10 100 1000 10000 100000 1000000

Re

N
u

Pr = 8.07 (water, 60oF)
viscosity ratio = 1.00
L/D = 65

104 105 106

 14.0
3

1

PrRe86.1 















w

b

L

D
Nu




 14.0

3

1
8.0 PrRe027.0 










w

bNu



 

Geankoplis, 4th ed. eqn
4.5-4, page 260

If dimensional analysis is 
right, we should get a 

single curve, not multiple 
different curves 

depending on:  , , , .

Dimensional 
Analysis 

WINS AGAIN!

Complex Heat Transfer – Dimensional Analysis

35

14.0
3
1

PrRe86.1 















w

ba
a L

D
k
Dh

Nu



Heat Transfer in Laminar flow in pipes: 
data correlation for forced convection heat transfer coefficients

Geankoplis, 4th ed. eqn 4.5-4, page 260

2100, 100, horizontal pipes; all physical properties 

evaluated at the mean temperature of the bulk fluid except which is 
evaluated at the (constant) wall temperature.

the subscript “a” refers to 
the type of average 
temperature used in 

calculating the heat flow, q

   
2

bowbiw
a

aa
TTTT

T

TAhq






© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis
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© Faith A. Morrison, Michigan Tech U.

Forced convection 
Heat Transfer in Turbulent flow in pipes

•all physical properties (except ) 
evaluated at the bulk mean temperature
•Laminar or turbulent flow

Physical Properties 
evaluated at:

N 0.027Re . Pr
.

, ,

2

May have to be 
estimated

Forced convection 
Heat Transfer in Laminar flow in pipes

N 1.86 RePr
.

, ,

2

Complex Heat Transfer – Dimensional Analysis
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bulk mean 
temperatureFine print 

matters!
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In our dimensional analysis, we assumed constant , k, , 
etc.  Therefore we did not predict a viscosity-temperature 
dependence.  If viscosity is not assumed constant, the 
dimensionless group shown below is predicted to appear 
in correlations.

?

© Faith A. Morrison, Michigan Tech U.

(reminiscent of pipe wall roughness; needed to modify 
dimensional analysis to correlate on roughness)

Complex Heat Transfer – Dimensional Analysis

38

Forced convection Heat Transfer in Laminar flow in pipes
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Viscous fluids with large	Δ

ref:  McCabe, Smith, Harriott, 5th ed, p339

heating

cooling

lower viscosity fluid layer 
speeds flow near the 
wall  higher h

higher viscosity fluid 
layer retards flow near 
the wall  	 ower h

14.0










w

b




wb  

wb  

empirical result:

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis
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Why does appear in laminar flow correlations and 

not in the turbulent flow correlations?

h(z)

Lh

10 20 30 40 50 60 70

Less lateral mixing in laminar flow 
means more variation in .

LAMINAR

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis
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Forced convection 
Heat Transfer in Laminar flow in pipes
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h(z)

Lh

10 20 30 40 50 60 70

7.0

1










D

L

h

h

L

In turbulent flow, good lateral mixing reduces the 
variation in along the pipe length.

TURBULENT

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis
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Forced convection 
Heat Transfer in Turbulent flow in pipes

laminar flow
in pipes
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Re<2100, (RePrD/L)>100,
horizontal pipes, eqn 4.5-4,
page 238; all properties
evaluated at the temperature of
the bulk fluid except w which
is evaluated at the wall
temperature.

turbulent flow
in smooth

tubes

14.0

3

1
8.0 PrRe027.0 










w

blm
lm k

Dh
Nu




Re>6000, 0.7 <Pr <16,000,
L/D>60 , eqn 4.5-8, page 239;
all properties evaluated at the
mean temperature of the bulk
fluid except w which is
evaluated at the wall
temperature.  The mean is the
average of the inlet and outlet
bulk temperatures; not valid
for liquid metals.

air at 1atm in
turbulent flow

in pipes
2.0

8.0

2.0

8.0

)(

)/(5.0

)(

)/(52.3

ftD

sftV
h

mD

smV
h

lm

lm




equation 4.5-9, page 239

water in
turbulent flow

in pipes

    

    
2.0

8.0

2.0

8.0

)(

/
011.01150

)(

/
0146.011429

ftD

sftV
FTh

mD

smV
CTh

o
lm

o
lm




4 < T(oC)<105, equation 4.5-
10, page 239

Example of partial solution to Homework (bring to tests)

© Faith A. Morrison, Michigan Tech U.

(
mean)
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© Faith A. Morrison, Michigan Tech U.

Complex Heat transfer Problems to Solve:

•Forced convection heat transfer from fluid to wall

•Natural convection heat transfer from fluid to wall

•Radiation heat transfer from solid to fluid

Solution:  ?

Solution:  ?

Solution:  ?

We started with a forced-convection pipe 
problem, did dimensional analysis, and found 
the dimensionless numbers.

To do a situation with different physics, we 
must start with a different starting problem.

43

Free Convection i.e. hot air rises

•heat moves from hot surface to cold air (fluid) by radiation and conduction
•increase in fluid temperature decreases fluid density
•recirculation flow begins
•recirculation adds to the heat-transfer from conduction and radiation

 coupled heat and momentum transport

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis—Free Convection

44
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Free Convection i.e. hot air rises

How can we solve real problems 
involving free (natural) convection?

We’ll try this:  Let’s review how we 
approached solving real problems in 
earlier cases, i.e. in fluid mechanics, 

forced convection.

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis—Free Convection

45

Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result

inQ
onsW ,

Process 
scale

1T 

2T 

1T 2T
cold less cold

less hot

hot

1T 

2T 

1T 2T
cold less cold

less hot

hot

Complex Heat Transfer – Dimensional Analysis—Free Convection

46
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Example: Free convection between long parallel plates or
heat transfer through double-pane glass windows

T2 T1
12 TT 

y
z

assumptions:
•long, wide slit
•steady state
•no source terms
•viscosity constant
•density varies with 

Calculate: , 	profiles

(warm) (cool)b

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis—Free Convection

47
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Example :  Natural convection between vertical plates

T2 T1
12 TT 

y
z

(warm) (cool)b

⋅

Momentum balance:

⋅ ⋅ 0

Mass balance:

Complex Heat Transfer – Dimensional Analysis—Free Convection
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© Faith A. Morrison, Michigan Tech U.

49

Example :  Natural convection between vertical plates

You try.

T2 T1
12 TT 

y
z

(warm) (cool)b

Complex Heat Transfer – Dimensional Analysis—Free Convection

© Faith A. Morrison, Michigan Tech U.

⋅ ⋅ 0

Mass balance:

T2 T1
12 TT 

y
z

(warm) (cool)b

0

Complex Heat Transfer – Dimensional Analysis—Free Convection

50
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© Faith A. Morrison, Michigan Tech U.

⋅ ⋅ 0

Mass balance:

0

steady

T2 T1
12 TT 

y
z

(warm) (cool)b

Complex Heat Transfer – Dimensional Analysis—Free Convection

51

tall, wide

© Faith A. Morrison, Michigan Tech U.

⋅ ⋅ 0

Mass balance:

0

steady

T2 T1
12 TT 

y
z

(warm) (cool)b

Conclusion:  density 
must not vary with .

,

Complex Heat Transfer – Dimensional Analysis—Free Convection

52

tall, wide
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⋅

Momentum balance:

	

	

	

Complex Heat Transfer – Dimensional Analysis—Free Convection

53

y
z

Is Pressure a function of z?
YES, there should be hydrostatic pressure (due to weight of fluid)

average 
density

“Pressure at the bottom of 
a column of fluid = 

pressure at top .”

© Faith A. Morrison, Michigan Tech U.

⇒ ̅

̅

̅

Let 
at 0

at ,

Complex Heat Transfer – Dimensional Analysis—Free Convection
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To account for the temperature variation of :

2
21 TT

T










volumetric coefficient of expansion at 

mean density

© Faith A. Morrison, Michigan Tech U.

(look up the physics in the literature)

̅

Complex Heat Transfer – Dimensional Analysis—Free Convection
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© Faith A. Morrison, Michigan Tech U.

⋅

Energy balance:

T2 T1
12 TT 

y
z

(warm) (cool)b

Complex Heat Transfer – Dimensional Analysis—Free Convection
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⋅

Energy balance:

T2 T1
12 TT 

y
z

(warm) (cool)b

2 2

2

…

Complex Heat Transfer – Dimensional Analysis—Free Convection

57

(solve)

© Faith A. Morrison, Michigan Tech U.

⋅

Energy balance:

T2 T1
12 TT 

y
z

(warm) (cool)b

2 2

2

…
̅ ̅ ̅

̅ ̅ ̅
2

Complex Heat Transfer – Dimensional Analysis—Free Convection

58

(solve)
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⋅

Energy balance:

T2 T1
12 TT 

y
z

(warm) (cool)b

2 2

2

…
̅ ̅ ̅

̅ ̅ ̅
2

Solve
Complex Heat Transfer – Dimensional Analysis—Free Convection

59

Final Result: (free convection between two slabs)

 



























b

y

b

ybTTg
yvz

32
12

12
)(




(see next slide for plot)

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis—Free Convection
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-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 b

y

max,z

z

v

v

Velocity profile for free convection between two wide,
 tall, parallel plates

© Faith A. Morrison, Michigan Tech U.

(Note that the temperature 
maxima are not centered) 

Complex Heat Transfer – Dimensional Analysis—Free Convection

61

Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result

Free Convection i.e. hot air rises
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Energy balance:

Momentum balance:

	

Mass balance:

T2 T1
12 TT 

y
z

(warm) (cool)b

0

Free Convection i.e. hot air rises
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Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result

Free Convection i.e. hot air rises

64
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Nondimensionalize the 
governing equations; 

deduce dimensionless 
scale factors 

To nondimensionalized the Navier-
Stokes for free convection problems,  
we follow the simple problem we just 
completed: , 0.

gvPvv
t

v  





 

 2

driving the 
flow

there was 
a trick for 

this

density not 
constant 

Return to Dimensional Analysis… 

65

EXAMPLE I: Pressure-
driven flow of a 
Newtonian fluid in a 
tube:  

•steady state
•well developed
•long tube

g

cross-section A:

r

z

L

R
fluid

A

 r
 z

zv

How did we nondimensionalized the Navier-Stokes before?

FORCED CONVECTION

There was an average 
velocity used as the 

characteristic velocity

© Faith A. Morrison, Michigan Tech U.
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z-component of the Navier-Stokes Equation:
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2
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2

2

11

Choose:

= characteristic length
= characteristic velocity
/ = characteristic time

= characteristic pressure

This velocity is an 
imposed (forced) 
average velocity

FORCED CONVECTION FORCED CONVECTION FORCED CONVECTION

© Faith A. Morrison, Michigan Tech U.

We do not have such 
an imposed velocity in 

natural convection
67

V

v
v z

z 
*

non-dimensional variables:

D

tV
t *

D

z
z *

D

r
r *

2
*

V

P
P




g

g
g z

z 
*

time: position: velocity:

driving 
force:

V

v
v r

r 
*

V

v
v 
 
*

FORCED CONVECTION FORCED CONVECTION FORCED CONVECTION

© Faith A. Morrison, Michigan Tech U.
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z-component of the 
nondimensional Navier-Stokes 
Equation:
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Re

1

Fr

1

FORCED CONVECTION FORCED CONVECTION FORCED CONVECTION
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For free convection, what is the average velocity?  

for forced convection we used:

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

≡ 〈 〉

We do not have such 
an imposed velocity in 

natural convection

∗

70
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For free convection, what is the average velocity?  

for forced convection we used:

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

≡ 〈 〉

We do not have such 
an imposed velocity in 

natural convection

∗

71

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 b

y

max,z

z

v

v

y p
 tall, parallel plates

ZERO

For free convection, what is the average velocity?  
Answer:  zero!

for forced convection we used:

For free convection 〈 〉 0;what	V should we use for free convection?

Solution:  use a Reynolds-number type expression so that no 
characteristic velocity imposes itself (we’ll see now how that works): 

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

≡ 〈 〉

We do not have such 
an imposed velocity in 

natural convection

⇒ ≡
̅

∗ ̅

∗
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When non-dimensionalizing the Navier-Stokes, what do I 
use for ? (answer from idealized problem)
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2

2

11

here we use ̅
because the issue 

is volumetric
flow rate

here we use 
because the issue 
is driving the flow

by density differences
affected by gravity

as before, for 
pressure 
gradient we 
use ̅

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.
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Dv

v z
z 
*

non-dimensional variables:



2

*

D

t
t 

D

z
z *

D

r
r *

time: position: velocity:


 Dv

v r
r 
*


 


Dv

v *

FREE CONVECTION FREE CONVECTION FREE CONVECTION

driving 
force:

TT

TT
T





2

*

© Faith A. Morrison, Michigan Tech U.
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    *
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2
23*2
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T
TTgD
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Dt
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SOLUTION:  z-component of the nondimensional
Navier-Stokes Equation (free convection):
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≡Grashof number

FREE CONVECTION FREE CONVECTION FREE CONVECTION

Or any appropriate 
characteristic Δ

© Faith A. Morrison, Michigan Tech U.
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  **2
*

*

GrTv
Dt

Dv
z

z 

*2****
*

*

Pr

1
TTv

t

T














Dimensionless Equation of Motion (free convection)

Dimensionless Energy Equation (free convection; Re = 1)
















D

L

D

L
T ,GrPr,NuNu,NuNu *

FREE CONVECTION FREE CONVECTION FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

Gr ≡
̅ ̅Δ

76
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Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result

Free Convection i.e. hot air rises

77

Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until useful correlations result

Free Convection i.e. hot air rises

Done (see 
literature)
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mma
k

hL
PrGrNu 

Example: Natural convection from vertical planes and 
cylinders

•a,m are given in Table 4.7-1, page 255 Geankoplis for several 
cases
•L is the height of the plate
•all physical properties evaluated at the film temperature, Tf

2
bw

f

TT
T




FREE CONVECTION

© Faith A. Morrison, Michigan Tech U.

Gr ≡
̅ ̅Δ

Free convection 
correlations use the 

film temperature 
for calculating the 
physical properties

Free convection 
correlations use the 

film temperature 
for calculating the 
physical properties

Literature Results:

79

Natural convection
Vertical planes and 
cylinders

•all physical properties evaluated at 
the film temperature, Tf

© Faith A. Morrison, Michigan Tech U.

Forced convection 
Heat Transfer in Laminar flow in pipes

Nu Gr Pr

Physical Properties 
evaluated at:

2

, ,

2N 1.86 RePr
.

•all physical properties (except ) 
evaluated at the bulk mean temperature
•(true also for turbulent flow correlation) 

compare with:

Physical Properties 
evaluated at:

Complex Heat Transfer – Correlations for Nu

80
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Engineering Modeling

© Faith A. Morrison, Michigan Tech U.

•Choose an idealized problem and solve it

•From insight obtained from ideal problem, identify 
governing equations of real problem

•Nondimensionalize the governing equations; deduce 
dimensionless scale factors (e.g. Re, Fr for fluids)

•Design experiments to test modeling thus far

•Revise modeling (structure of dimensional analysis, 
identity of scale factors, e.g. add roughness lengthscale)

•Design additional experiments

•Iterate until Useful correlations result

Free Convection i.e. hot air rises

Success! 
(Dimensional Analysis 

wins again)
81

© Faith A. Morrison, Michigan Tech U.

Practice Heat-Transfer Problems: 

Forced Convection
Free Convection

82
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Practice 1:  A wide, deep rectangular oven (1.0	 tall) is used for 
baking loaves of bread. During the baking process the temperature 
of the air in the oven reaches a stable value of 100 .  The oven 
side-wall temperature is measured at this time to be a stable 450 .  
Please estimate the heat flux from the wall per unit width.

Reference:  Geankoplis Ex. 4.7-1 page 279 83

© Faith A. Morrison, Michigan Tech U.

Practice 2:  A hydrocarbon oil enters a pipe (0.0303	 inner 
diameter; 15.0	 long) at a flow rate of 80	 / . Steam condenses 
on the outside of the pipe, keeping the inside pipe surface at a 
constant 350 .  If the temperature of the entering oil is 150 , what 
is temperature of the oil at the outlet of the pipe?

Reference:  Geankoplis Ex. 4.5-5 page 269

Hydrocarbon oil properties:

Mean heat capacity 0.50

Thermal conductivity 0.083
	 	

Viscosity 
6.50	 , 150
5.05	 	200
3.80 	250
2.82	 	300
1.95	 	350

84
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Practice 3:  Air flows through a tube 25.4	 inside diameter, long 
tube) at 7.62	 / .  Steam condenses on the outside of the tube 
such that the inside surface temperature of the tube is 488.7	 .    If 
the air pressure is 206.8	 and the mean bulk temperature of the 
air is T T /2 477.6	 , what is the steady-state heat flux to 
the air?

Reference:  Geankoplis Ex. 4.5-1 page 262 85

© Faith A. Morrison, Michigan Tech U.

Practice 4:  Hard rubber tubing inside	radius 5.0 ; outside	
radius 20.0 is used as a cooling coil in a reaction bath.  Cold 
water is flowing rapidly inside the tubing; the inside wall 
temperature is 274.9	 and the outside wall temperature is 297.1	 .
To keep the reaction in the bath under control, the required cooling 
rate is 14.65	 .  What is the minimum length of tubing needed to 
accomplish this cooling rate?  What length would be needed if the 
coil were copper?

Reference:  Geankoplis Ex. 4.2-1 page 243, but don’t do it his way—follow class methods.

Hard rubber properties:

Density 1198

Thermal conductivity 0 0.151

86
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Practice 5:  A cold-storage room is constructed of an inner layer of 
pine (thickness 12.7	 ), a middle layer of cork board (thickness 
101.6	 ), and an outer layer of concrete (thickness 

76.2	 ).  The inside wall surface temperature is 255.4	 and the 
outside wall surface temperature is 297.1	 .  What is the heat loss 
per square meter through the walls and what is the temperature at 
the interface between the wood and the cork board?

Reference:  Geankoplis Ex. 4.3-1 page 245, but don’t do it his way—follow class methods.

Material properties:

Thermal conductivity pine 0.151

Thermal conductivity cork	board 0.0433

Thermal conductivity concrete 0.762

87

© Faith A. Morrison, Michigan Tech U.

Practice 6:  A thick-walled tube (stainless steel; 0.0254	 	inner 
diameter; 0.0508	 outer diameter; length 0.305	 ) is covered with 
a 0.0254	 thickness of insulation.  The inside-wall temperature of 
the pipe is 811.0	 and the outside surface temperature of the 
insulation is 310.8	 .  What is the heat loss and the temperature at 
the interace between the steel and the insulation?

Reference:  Geankoplis Ex. 4.3-2 page 247, but don’t do it his way—follow class methods.

Material properties of stainless steel:

Thermal conductivity 21.63

Density 7861

Heat Capacity 490
	

Material properties of insulation:

Thermal conductivity 0.2423
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Experience with Dimensional Analysis thus far:
•Flow in pipes at all flow rates (laminar and turbulent)

Solution:  Navier-Stokes, Re, Fr, L/D, 
dimensionless wall force = f; f=f(Re, L/D)

Solution:  Navier-Stokes, Re, 
dimensionless drag= CD; CD = CD(Re)

•Forced convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Re, Pr, L/D, 
heat transfer coefficient=h; h = h(Re,Pr,L/D)

•Flow around obstacles (spheres, other complex shapes

•Natural convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Gr, Pr, L/D, 
heat transfer coefficient=h; h = h(Gr,Pr,L/D)

© Faith A. Morrison, Michigan Tech U.
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•Flow in pipes at all flow rates (laminar and turbulent)
Solution:  Navier-Stokes, Re, Fr, L/D, 
dimensionless wall force = f; f=f(Re, L/D)

Solution:  Navier-Stokes, Re, 
dimensionless drag= CD; CD = CD(Re)

Now, move to last heat-transfer mechanism:
•Radiation heat transfer from solid to fluid?

Solution:  ?

•Forced convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Re, Pr, L/D, 
heat transfer coefficient=h; h = h(Re,Pr,L/D)

•Flow around obstacles (spheres, other complex shapes

•Natural convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Gr, Pr, L/D, 
heat transfer coefficient=h; h = h(Gr,Pr,L/D)

© Faith A. Morrison, Michigan Tech U.

Experience with Dimensional Analysis thus far:

90



Lectures 4-5 CM3110 Heat Transfer 11/27/2017

46

•Flow in pipes at all flow rates (laminar and turbulent)
Solution:  Navier-Stokes, Re, Fr, L/D, 
dimensionless wall force = f; f=f(Re, L/D)

Solution:  Navier-Stokes, Re, 
dimensionless drag= CD; CD = CD(Re)

Now, move to last heat-transfer mechanism:
•Radiation heat transfer from solid to fluid?

Solution:  ?

•Forced convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Re, Pr, L/D, 
heat transfer coefficient=h; h = h(Re,Pr,L/D)

•Flow around obstacles (spheres, other complex shapes

•Natural convection heat transfer from fluid to wall
Solution:  Microscopic energy, Navier-Stokes, Gr, Pr, L/D, 
heat transfer coefficient=h; h = h(Gr,Pr,L/D)

© Faith A. Morrison, Michigan Tech U.

Actually, we’ll hold off on 
radiation and spend some 

time on heat exchangers and 
other practical concerns

Experience with Dimensional Analysis thus far:

91

© Faith A. Morrison, Michigan Tech U.

Next:

92


