

flowing through a hot pipe. The pipe the inside surface of the pipe (the sur held at a constant temperature of 325 250° F in the pipe, which is 15 ft long 0.0303 ft. The inlet oil temperature is rate of the oil be (in units of lb _m /h) suc desired temperature of 250° C?	is heated in such a way that face in contact with the oil) is 5°F. The oil is to be heated to and has an inside diameter of 175°F. What should the flow ch that the oil exits at the
The viscosity of the oil varies with ten 150°F, 6.50 cP 200°F, 5.05 cP 250°F, 3.80 cP 300°F, 2.82 cP 350°F, 1.95 cP	nperature as follows:

Example 7:

Water flows at 0.0522 kg/s (turbulent) in the inside of a double pipe heat exchanger (inside steel pipe, inner diameter=0.545 inches, length unknown, physical properties given below); the water enters at $30.0^{\circ}C$ and exits at $65.6^{\circ}C$. In the shell of the heat exchanger, steam condenses at an unknown saturation pressure. What is the heat transfer coefficient, h_{lm} (based on log mean temperature driving force) in the water flowing in the pipe? You may neglect the effect on heat-transfer coefficient of the temperature-dependence of viscosity. Please give your answer in W/m^2K .

> Physical properties of steel: thermal conductivity = 16.3 W/mKheat capacity = 0.49 kJ/kg Kdensity = $8050 kg/m^3$

© Faith A. Morrison, Michigan Tech U.

9