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CM3110 

Transport Processes and Unit Operations I

Professor Faith Morrison

Department of Chemical Engineering
Michigan Technological University

www.chem.mtu.edu/~fmorriso/cm310/cm310.html

CM3110 - Momentum and Heat Transport
CM3120 – Heat and Mass Transport
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EMERGENCY EVACUATION PROCEDURES

Important: The Michigan Bureau of Fire Services has adopted 
new rules for colleges and universities effective 2015

1. Only residence halls are required to hold fire and tornado drills.
2. In lieu of fire drills in other university buildings all faculty and instructional staff are 
required to do the following on the first day of class:

- Explain the university fire evacuation procedures to the class (see below).
- Explain the locations of the primary and secondary exit routes for your class 

location.
- Explain your designated safe location where the class will meet after evacuating 

the building.
3. The class instructor is responsible for directing the class during a building 
evacuation.

General evacuation procedure:
- Use the nearest safe exit route to exit the building. The nearest safe exit from 
room 15-139 is the front (south) entrance that is close to highway 41.  The 
secondary exit is the campus (north) exit, that connects to the main path 
through campus.
- Close all doors on the way out to prevent the spread of smoke and fire.
- After exiting, immediately proceed to a safe location at least 100 feet from the 
building. Our designated safe location is east of Fisher, in the parking lot of the 
Center for Diversity and Inclusion.
- Do not re-enter the building until the all-clear is given by Public Safety or the fire 
department. 
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Why study fluid mechanics?
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Why study fluid mechanics?

•It’s required for my degree

4
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Why study fluid mechanics?

•It’s required for my degree (too literal)

•Fluids are involved in engineered systems
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Image from: money.cnn.com

Image from: newegg.com
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Why study fluid mechanics?

•It’s required for my degree (too literal)

•Fluids are involved in engineering systems (many 
devices that employ fluids can be operated and 
maintained and sometimes designed without detailed 
mathematical analysis)
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Why study fluid mechanics?

•Modern engineering systems are complex and often 
cannot be operated and maintained without analytical 
understanding

8

•Design of new systems will come from 
high-tech innovation, which can only come 
from detailed, analytical understanding of 
how physics/nature works

Image:  wikipedia.org
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O2  
heat 

exchanger 

pump 

membrane 
oxygenator – 
oxygen goes 
into blood; 
carbon 
dioxide 
comes out  

O2 

MO 

spent 
blood 

fresh 
blood 

Membrane Oxygenator, MO
(Heart-Lung Machine)

 

 

 

 

Secondary flow drives 
the O2 mass transfer
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Artificial Heart

Image:  health.howstuffworks.com/medicine/modern/artificial-heart.htm
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Microfluidics – Lab on a Chip
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www.nature.com/nmeth/journal/v4/n8/full/nmeth0807-665.html
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Sensors, 
diagnostics

And more. . . . 
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Helicopters
Airplanes
Quieter fans
Flexible body armor
Undersea oil drilling
Surgery
Food processing
Plastics
2D and 3D printing
Battery manufacture
Celestial exploration
Volcanos 
Biomedical devices (stents, artificial organs, 
prosthetics)
Sensor development
… 
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Where to start?
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Where to start?

14

We’ve already started.
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We’ve already started.
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1. We’ve learned fluid statics.

www.youtube.com/watch?v=zeNQOqr63cc

DrMorrisonMTU on YouTube:  
Introduction to Manometers: Two Essential Rules

On 4Sept17 #views >126,000!

© Faith A. Morrison, Michigan Tech U.

We’ve already started.

16

2. There are flow problems that can 
be addressed with a macroscopic 
energy balance:

2
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1. single-input, single output
2. Steady state
3. Constant density (incompressible fluid)
4. Temperature approximately constant
5. No phase change, no chemical rxn
6. Insignificant amounts of heat transferred 

The Mechanical Energy Balance

Assumptions:

friction
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Flow in Pipes 
and Fittings

17

For example:
 

pump 

ID=3.0 in ID=2.0 in 

75 ft 

tank 

50 ft 40 ft 

20 ft 

8 ft 

1 

2 

1. Single-input, single output
2. Steady state
3. Constant density (incompressible fluid)
4. Temperature approximately constant
5. No phase change, no chemical rxn
6. Insignificant amounts of heat transferred 

Mechanical Energy 
Balance

© Faith A. Morrison, Michigan Tech U.

 

)( ftH  

)(1,2 VH 
 

)(, VH sd


 

)/( mingalV  

valve 50% 
open 

valve full 
open 

 

pump 

system 

Centrifugal 
Pumps

What flow rate does 
a centrifugal pump 
produce?

Answer:  Depends 
on how much work it 
is asked to do.

18

For example:

Calculate with the 
Mechanical Energy 

Balance
(CM2110, CM2120, 

CM3215)



Lectures 1&2 F. Morrison CM3110 9/4/2017

10

© Faith A. Morrison, Michigan Tech U.

19

We can apply the MEB to many 
important engineering systems

1. single-input, single output
2. Steady state
3. Constant density (incompressible fluid)
4. Temperature approximately constant
5. No phase change, no chemical rxn
6. Insignificant amounts of heat 

transferred 

MEB Assumptions:
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Image from:  
www.directindustry.com

Image from:  
www.processindustryforum.com

Image from:  
www.directindustry,com

Calculate: 
Work, 

pressures, 
flows
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The Mechanical Energy Balance

Where do we get this?

This is the friction due to wall drag 
(straight pipes) and fittings and valves.
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friction
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The Mechanical Energy Balance – Friction Term

The friction has been measured and published in this form:

Straight pipes:

   
 

2

4
2straight pipes

vL
F f

D

Use literature plot of f
as a function of 
Reynolds Number

Fittings and Valves:


2

, 2fittings f
valves

v
F K

Use literature tables 
of Kf for laminar and 
turbulent flow
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length of 
straight pipe

number of each 
type of fitting

friction-loss 
coefficients 

(from literature; see 
McCabe et al., 
Geankoplis, or 

Morrison Chapter 1)

Friction term in Mechanical Energy Balance

© Faith A. Morrison, Michigan Tech U.

If the velocity changes within the system (e.g. 
pipe diameter changes), then we need different 

friction terms for each velocity

Note that friction 
overall is directly a 
function of velocity)

(see McCabe et al., or 
Morrison Chapter 1, or Perry’s 

Chem Eng Handbook)
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Note f is a function 
of velocity)

(from literature; the 
Moody chart)

friction
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Fanning Friction Factor
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(image from:  Geankoplis)

Moody Chart:  Data Correlation for Friction in Straight Pipes
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Moody Chart
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Friction Loss from Fittings 

(source:  Morrison, Chapter 1; originally 
from Perry’s Handbook)

© Faith A. Morrison, Michigan Tech U.

Example 1

26

What is the pressure change over 50 meters of 1/2 inch 
inner-diameter straight pipe?  The average velocity is 5.2 ft/s and 
the pipe is smooth.
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Example 1

27

What is the pressure change over 50 meters of 1/2 inch 
inner-diameter straight pipe?  The average velocity is 5.2 ft/s and 
the pipe is smooth.

ANSWER: 18 psi

(our TA has the solution:  HW/Example 
help session Sunday 6:30-7:30)

© Faith A. Morrison, Michigan Tech U.

Example 2

28

What is the volumetric flow rate at the drain from a 
constant-head tank with a fluid level h?  You may neglect 
frictional losses.
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Example 2

29

What is the volumetric flow rate at the drain from a 
constant-head tank with a fluid level h?  You may neglect 
frictional losses.

ANSWER: 2

For more examples:  see 
CM2110/20 notes; HW1; 

Prerequisite review 
readings

30

Exam 1:  Next Tues 6:30-8:00pm
Last year’s exam and solution is on the web. TA help session is Sunday night
Exam topics: vectors, linear algebra, integration, MEB, fluid statics
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• It is limited in application:

• It cannot determine flow patterns

• It does not model momentum exchanges

• It cannot be adapted to systems other than 
those for which it was designed (see list above)

© Faith A. Morrison, Michigan Tech U.

The Mechanical Energy Balance (MEB) is a 
macroscopic analysis.

31

1. single-input, single output
2. Steady state
3. Constant density (incompressible fluid)
4. Temperature approximately constant
5. No phase change, no chemical rxn
6. Insignificant amounts of heat transferred 
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Energy balances (the MEB) can only take us so 
far with fluids modeling (due to assumptions).

32

To understand complex flows, we must use 

the MOMENTUM balance.
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Image from: www-
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Momentum Balance:  
Newton’s 2nd Law of Motion

33
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PH 2100:  apply to 
individual bodies

CM 3110:  apply to 
a continuum

See also:  http://youtu.be/6KKNnjFpGto
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Fluid Mechanics

34

• Continuum (density, velocity, stress fields)

• Control volume

• Stress in a fluid at a point (stress tensor)

• Stress and deformation (Newtonian constitutive equation)

• Microscopic and macroscopic  momentum balances 

• Internal flows – pipes, conduits

• External flows – drag, boundary layers

• Advanced fluid mechanics – complex shapes

, ,

control volume

(calc3)
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Momentum . . .

35

is a vector

Microscopic momentum balance
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So we need vector math.
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2

1

Same vector, 
different coordinate systems, 
different components.

magnitudevectorvv 

 
vectorunitv

v

v
 ˆ

© Faith A. Morrison, Michigan Tech U.

We choose coordinate 
systems for convenience.

Vectors

36

1x rv v v 
Note:

(usually)
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creeping flow 
(sphere)

 
0.

01
  

0.
2 

0.
6 

1.
2 

2.
0 

3.
0 

Vector plot of the velocity 
field in slow flow around a 

sphere

The flow is a steady 
upward flow; the length 
and direction of the vector 
indicates the velocity at 
that location.

37

Fluid velocity is a vector field

, ,

Vectors – Cartesian coordinate system

© Faith A. Morrison, Michigan Tech U.

•We do algebra with the basis vectors the same way as with other quantities

•The Cartesian basis vectors are constant (do not change with position)

38

(three ways of writing the same 
thing, the Cartesian basis vectors)

̂ ̂ ̂

̂ ̂ ̂

̂ ̂
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Vectors – Cylindrical coordinate system

•The cylindrical basis vectors are variable (depend on position)
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39

(see inside 
back cover of 

text; also, 
supplemental 

handouts)

̂ 	 ̂ ̂

© Faith A. Morrison, Michigan Tech U.

Vectors – Spherical coordinate system

•The spherical basis vectors are variable (with position)
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40

(see inside 
back cover of 

text; also, 
supplemental 

handouts)

̂ 	 ̂ ̂

Note:  spherical coordinate system in use by 
the fluid mechanics community uses 0

as the angle from the  =axis to the point.

In your calc 3 class, they 
probably called this 
and the other one 
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creeping flow 
(sphere)
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Fluid Velocity is a Vector Field

Velocity magnitude and 
direction vary with position

, ,

Example 3: At positions (1,45o,0) and (1,90o,0) in the , ,
coordinate system, the velocity vector of a fluid is given by  

© Faith A. Morrison, Michigan Tech U.

42

What is this vector in the usual coordinate system?

0
1
0
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0
1
0
0

ANSWERS:

: 		
0
1
0

̂

Example 3: At positions (1,45o,0) and (1,90o,0) in the , ,
coordinate system, the velocity vector of a fluid is given by  

What is this vector in the usual coordinate system?

0
1
0

© Faith A. Morrison, Michigan Tech U.

We use Calculus in Fluid Mechanics to:

1. Calculate flow rate, 

2. Calculate average velocity, 〈 〉

3. Express forces on surfaces due to fluids (vectors)

4. Express torques on surfaces due to fluids (vectors)

44

These are quantities of interest.
These items are what we are learning to calculate.
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1.  Calculate Flow rate:       or VQ

is the component of v in the direction normal to the 
area

  ˆv n

General:

Tube flow:

45
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Common surface shapes in the 
standard coordinate systems:

 



     





  2
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: ( )
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: ( ) ( ) sin sin

rectangular d area dxdy

circular d area r drd

surface of cylinder d area Rd dz

spherical d area rd r d r d d

46

(see inside 
back cover of 

text; also, 
supplemental 

handouts)
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Example 4:  Calculate the flow rate in flow down an 
incline plane of width W.

47

 22

2

)cos(
)( xH

g
xvz 




H
Momentum balance calculation gives:

(we will learn how to get this 
equation for ; here it is given)

© Faith A. Morrison, Michigan Tech U.

Example 4:  Calculate the flow rate in flow down an 
incline plane of width W.

48

 22

2

)cos(
)( xH

g
xvz 




H
Momentum balance calculation gives:

ANSWER:

3

(we will learn how to get this 
equation for ; here it is given)
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2.  Calculate Average velocity:  






2

Q
v

area

Q
v

R

v

“area” is the cross-sectional area normal to flow

General:

Tube flow:

49
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Example 5:  The shape of the velocity profile for a steady flow in a 
tube is found to be given by the function below. Over the range 0 <r<10 mm, 
(R=10mm), what is the average value of the velocity?

50
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51

ANSWER:
2

Example 5:  The shape of the velocity profile for a steady flow in a 
tube is found to be given by the function below. Over the range 0 <r<10 mm, 
(R=10mm), what is the average value of the velocity?

© Faith A. Morrison, Michigan Tech U.

3.  Express forces on surfaces due to fluids 

52

⋅ Π
Total fluid 
force on a 

surface

Π ≡ ̳ Total stress tensor
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Example 6:  In a liquid of density , what is the net fluid force on 
a submerged sphere (a ball or a balloon)?  What is the direction of the 
force and how does the magnitude of the fluid force vary with fluid 
density?

53

(p81)

H0
f

air

x

z

© Faith A. Morrison, Michigan Tech U.

Solution:  We will be able to do this in this course (Ch4, p257).

From expression for force due to fluid, obtain: 
(in spherical coordinates)

We can do the math from here. (Calc 3)

54

⋅ Π
Total fluid 
force on a 

surface

̂ sin
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Solution:  We will be able to do this in this course (Ch4, p257).

From expression for force due to fluid, obtain: 
(in spherical coordinates)

55

ANSWER: (see p83)

0
0

4
3

⋅ Π
Total fluid 
force on a 

surface

̂ sin

© Faith A. Morrison, Michigan Tech U.

4.  Express torques on surfaces due to fluids 

        ˆ
S at surface

total fluid torque
R n dS

on a surface
T

R lever arm

We will learn to write the stress tensor for our 
systems; then we can calculate stresses, torques.

56

   pI total stress tensor

(Points from axis of rotation 
to position where torque is 
applied)
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Example 7, Torque in Couette Flow:  A cup-and-bob apparatus is 
widely used to measure viscosities for fluids.  For the apparatus below, what 
is the torque needed to turn the inner cylinder (called the bob) at an angular 
speed of ? 

© Faith A. Morrison, Michigan Tech U.

57

© Faith A. Morrison, Michigan Tech U.

Torque in Couette Flow
Solution:

1. Solve for velocity field (microscopic momentum balance)

2. Calculate stress tensor
3. Formulate equation for torque (an integral)
4. Integrate
5. Apply boundary conditions

58
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Torque in Couette Flow
Solution:

59

See problem 6.22 p487
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Velocity solution:

   



   

  

T
v v

pI

        ˆ
S at surface

total fluid torque
R n dS

on a surface
T

What is lever 
arm, R?

etc…

© Faith A. Morrison, Michigan Tech U.

Torque in Couette Flow
Solution:

60

See problem 6.22 p487

        ˆ
S at surface

total fluid torque
R n dS

on a surface
T

ANSWER: (see p308)

4 Ω
1

0
0
1
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Summary of Quick Start 

A:  Mechanical Energy Balance

B): Use Calculus in Fluid Mechanics to 

1. Calculate flow rate 
2. Calculate average velocity
3. Express forces on surfaces due to fluids
4. Express torques on surfaces due to fluids 

61

1. SI-SO, steady, incompressible, no rxn, no Δ , no 
2. Macroscopic
3. Choose points 1 and 2 wisely
4. Solve for or , or , velocity, elevation

friction
2

,
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Summary of Quick Start 

A:  Mechanical Energy Balance

B): Use Calculus in Fluid Mechanics to 

1. Calculate flow rate 
2. Calculate average velocity
3. Express forces on surfaces due to fluids
4. Express torques on surfaces due to fluids 

1. SI-SO, steady, incompressible, no rxn, no , no 
2. Macroscopic
3. Choose points 1 and 2 wisely
4. Solve for or or , velocity, elevation

End of Quick Start.

We have reviewed:
• MEB (energy bal)
• Math tools

Now, on to Fluid Mechanics, 
i.e. momentum transport.
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