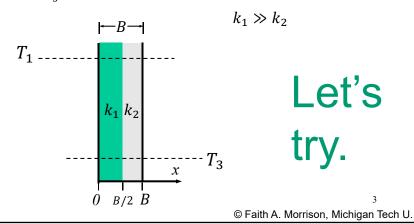


1D Heat Transfer

Using the solution: Composite Door:

For an outside door, a metal is used (k_1) for strength, and a cork k_2) is used for insulation. Both are the same thickness B/2. What is the temperature profile in the door at steady state? What is the flux? The inside temperature of the metal is T_1 and the outside temperature of the cork is T_3 .

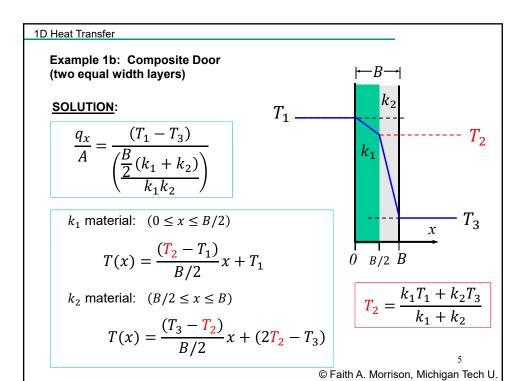


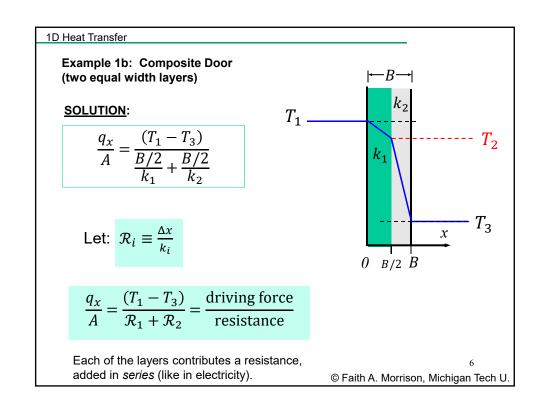
Note: in the hand notes the temperatures from left to right are T_1, T_3, T_2 .

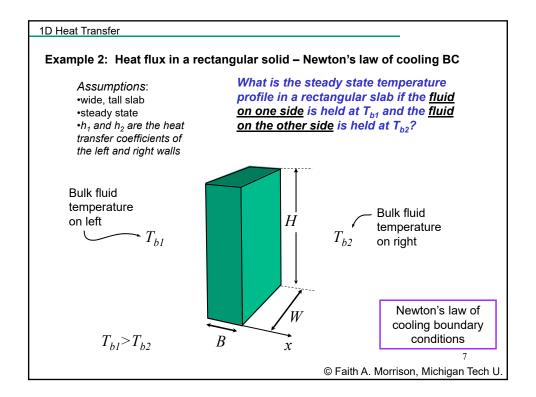
See handwritten notes.

https://pages.mtu.edu/~fmorriso/cm310/selected lecture slides.html

4







See handwritten notes (in class, also on web).

https://pages.mtu.edu/~fmorriso/cm310/selected_lecture_slides.html https://pages.mtu.edu/~fmorriso/cm310/algebra_details_N_law_cooling.pdf

3

1D Heat Transfer

Example 2: Heat flux in a rectangular solid - Newton's law of cooling BC

Solution: (temp profile, flux)

Temperature profile: $\frac{T_{b1} - T}{T_{b1} - T_{b2}} = \frac{\frac{x}{k} + \frac{1}{h_1}}{\left(\frac{1}{h_1} + \frac{B}{k} + \frac{1}{h_2}\right)}$

Flux: $\frac{q_x}{A} = \frac{T_{b1} - T_{b2}}{\frac{1}{h_1} + \frac{B}{k} + \frac{1}{h_2}}$

Rectangular slab with Newton's law of cooling BCs

9

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer

Example 2: Heat flux in a rectangular solid - Newton's law of cooling BC

Solution: (temp profile, flux)

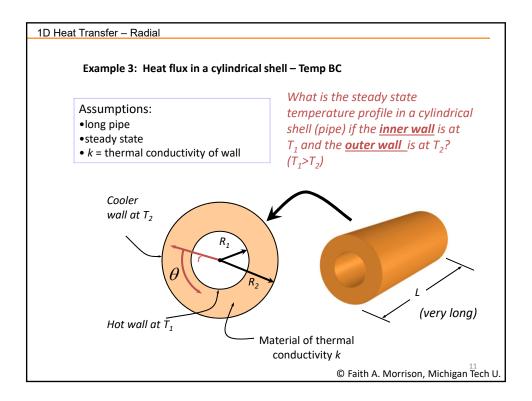
Temperature profile: $\frac{T_{b1} - T}{T_{b1} - T_{b2}} = \frac{\frac{x}{k} + \frac{1}{h_1}}{\left(\frac{1}{h_1} + \frac{B}{k} + \frac{1}{h_2}\right)}$

$$T = T_{b1} - \left(\frac{(T_{b_1} - T_{b_2})\frac{1}{k}}{\left(\frac{1}{h_1} + \frac{B}{k} + \frac{1}{h_2}\right)}\right) x + \left(\frac{(T_{b_1} - T_{b_2})\frac{1}{h_1}}{\left(\frac{1}{h_1} + \frac{B}{k} + \frac{1}{h_2}\right)}\right)$$

Resistance due to heat transfer at boundary

Resistance due to finite thermal conductivity

10



See handwritten notes in class.

https://pages.mtu.edu/~fmorriso/cm310/selected_lecture_slides.html

2

1D Heat Transfer - Radial

Example 3: Heat flux in a cylindrical shell - Temp BC

Solution for Cylindrical Shell:

 $\frac{\text{NOT}}{\text{constant}} \quad \frac{q_r}{A} = \left(\frac{(T_1 - T_2)}{\frac{1}{k} \ln \frac{R_2}{R_1}}\right) \frac{1}{r} \qquad \text{The heat flux } \frac{q_r}{A} \text{ DOES depend on, } k; \text{ also } \frac{q_r}{A} \text{ decreases as } 1/r$

NOT

$$\frac{T_2 - T}{T_2 - T_1} = \frac{\ln \frac{R_2}{r}}{\ln \frac{R_2}{R_1}}$$
Note that $T(r)$ does not depend on the thermal conductivity, k (steady state)

Pipe with temperature BCs

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer - Radial

Example 3: Heat flux in a cylindrical shell - Temp BC

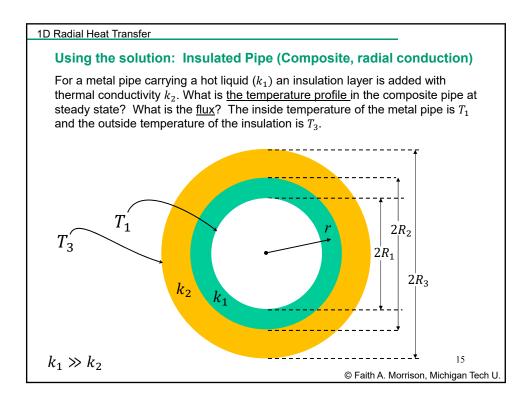
Solution for Cylindrical Shell:

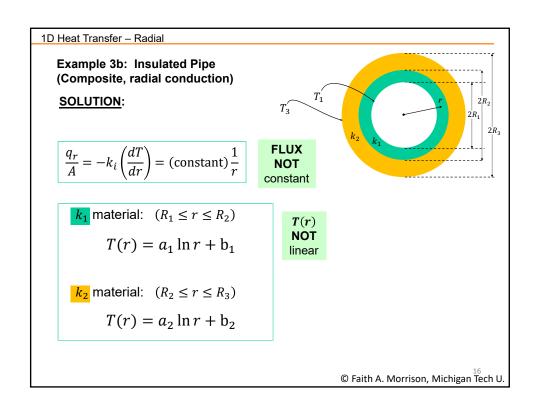
$$\begin{array}{cc} \text{NOT} & \frac{q_r}{A} = \left(\frac{(T_1 - T_2)}{\frac{1}{k} \ln \frac{R_2}{R_1}} \right) \frac{1}{r} \\ \end{array}$$

Let:
$$\mathcal{R}_i \equiv \frac{1}{k_i} \ln \frac{R_{i+1}}{R_i}$$

$$\frac{q_r}{A} = \left(\frac{(T_1 - T_2)}{\mathcal{R}_1}\right) \frac{1}{r} = \frac{\text{driving force}}{\text{resistance}}$$

Resistance due to finite thermal conductivity, radial



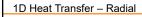


See Lecture 16 Slides

https://pages.mtu.edu/~fmorriso/cm310/selected lecture slides.html

17

© Faith A. Morrison, Michigan Tech U.



Example 3b: Insulated Pipe (Composite, radial conduction)

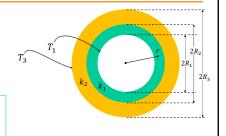
SOLUTION:

$$\frac{q_r}{A} = \left(\frac{(T_1 - T_3)}{\frac{1}{k_1} \ln \frac{R_2}{R_1} + \frac{1}{k_2} \ln \frac{R_3}{R_2}}\right) \frac{1}{r}$$

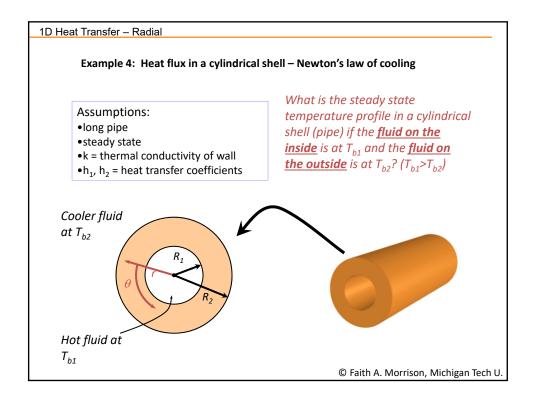
Let:
$$\mathcal{R}_i \equiv \frac{1}{k_i} \ln \frac{R_{i+1}}{R_i}$$

$$\frac{q_r}{A} = \left(\frac{(T_1 - T_3)}{\mathcal{R}_1 + \mathcal{R}_2}\right) \frac{1}{r} = \frac{\text{driving force}}{\text{resistance}}$$

Each of the layers contributes a resistance, added in series (like in electricity).



Note that we can continue to add layers in terms of resistance



See handwritten notes.

https://pages.mtu.edu/~fmorriso/cm310/selected_lecture_slides.html

20

1D Heat Transfer - Radial

Example 4: Heat flux in a cylindrical shell

Newton's law of cooling boundary conditions

Solution: Radial Heat Flux in an Annulus

T(r)

$$T - T_{b2} = \frac{(T_{b1} - T_{b2}) \left(\ln \left(\frac{R_2}{r} \right) + \frac{k}{h_2 R_2} \right)}{\frac{k}{h_2 R_2} + \ln \left(\frac{R_2}{R_1} \right) + \frac{k}{h_1 R_1}}$$

 $q_r(r)$

$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$

Resistance $\ensuremath{\mathcal{R}}$ due to heat transfer coefficients, radial

Resistance \mathcal{R} due to finite thermal conductivity, radial

© Faith A. Morrison, Michigan Tech U.

1D Heat Transfer - Radial

Solution: Radial Heat Flux in an Annulus

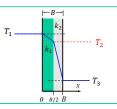
$$\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\frac{1}{h_2 R_2} + \frac{1}{k} \ln \left(\frac{R_2}{R_1}\right) + \frac{1}{h_1 R_1}} \left(\frac{1}{r}\right)$$
Note that we can continue to add layers in terms of resistance

Resistance \mathcal{R} due to heat transfer coefficients, radial

Resistance \mathcal{R} due to finite thermal conductivity, radial

Let:
$$\mathcal{R}_i \equiv \frac{\Delta x}{k_i}$$

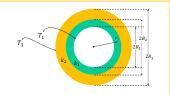
$$\frac{q_x}{A} = \frac{(T_1 - T_3)}{\mathcal{R}_1 + \mathcal{R}_2} = \frac{\text{driving force}}{\text{resistance}}$$



Note: Geankoplis uses a different resistance. For rectangular heat flux: $R_{Geankoplis} = \mathcal{R}/LW$

Let:
$$\mathcal{R}_i \equiv \frac{1}{k_i} \ln \frac{R_{i+1}}{R_i}$$

$$\frac{q_r}{A} = \left(\frac{(T_1 - T_3)}{\mathcal{R}_1 + \mathcal{R}_2}\right) \frac{1}{r} = \frac{\text{driving force}}{\text{resistance}}$$



Note: Geankoplis uses a different resistance. For radial heat flux:

 $R_{Geankoplis} = \mathcal{R}/2\pi L$

