

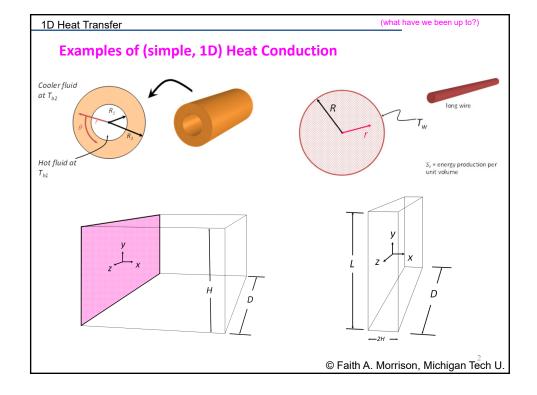
Michigan Tech

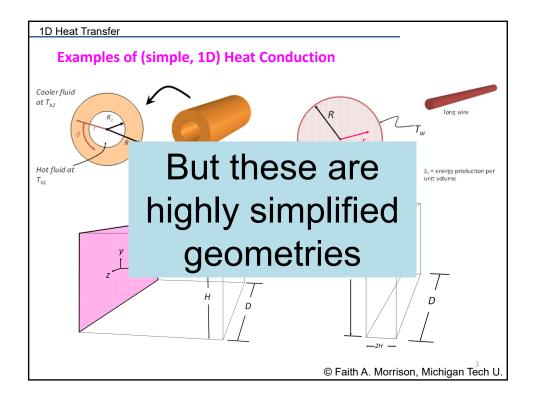
Complex Heat Transfer – Dimensional Analysis

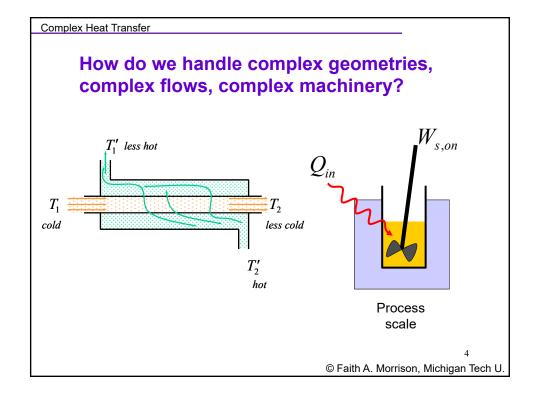
(Forced convection heat transfer)

Professor Faith Morrison

Department of Chemical Engineering Michigan Technological University







(**Answer**: Use the same techniques we have been using in fluid mechanics)

T_1 less hot T_2 less cold T_2 hot

Engineering Modeling

- •Choose an idealized problem and solve it
- •From insight obtained from **ideal** problem, identify governing equations of **real** problem
- •Nondimensionalize the governing equations; deduce dimensionless scale factors (e.g. Re, Fr for fluids)
- Design experiments to test modeling thus far
- •Revise modeling (structure of dimensional analysis, identity of scale factors, e.g. add roughness lengthscale)
- Design additional experiments
- ·Iterate until useful correlations result

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

Experience with Dimensional Analysis thus far:

•Flow in pipes at all flow rates (laminar and turbulent)

Solution: Navier-Stokes, Re, Fr, L/D, dimensionless wall force = f; f = f(Re, L/D)

•Rough pipes Solution: add additional length scale; then

nondimensionalize

•Non-circular conduits **Solution**: Use hydraulic diameter as the length

scale of the flow to nondimensionalize

•Flow around obstacles (spheres, other complex shapes

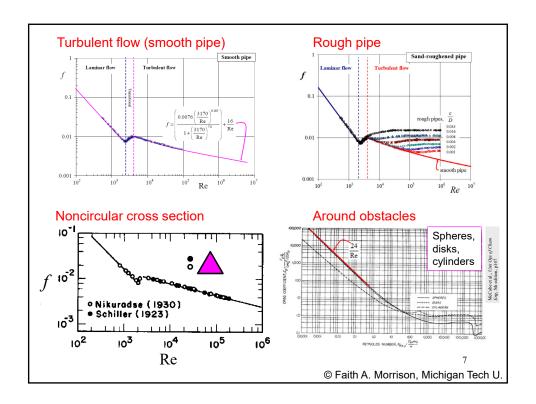
Solution: Navier-Stokes, Re, dimensionless

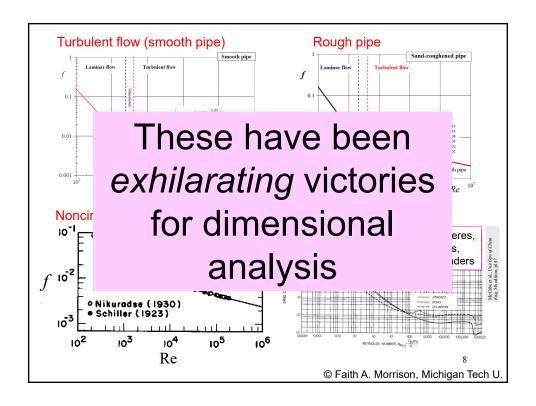
drag = C_D ; $C_D = C_D(Re)$

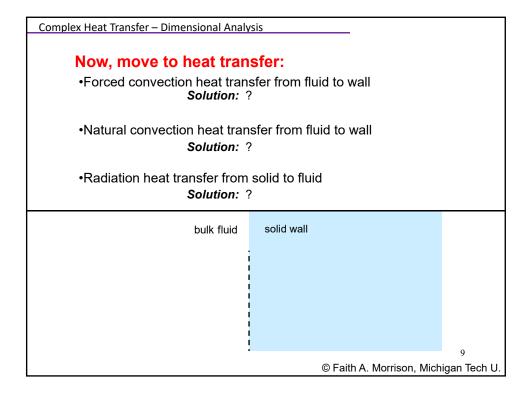
•Boundary layers Solution: Two components of velocity

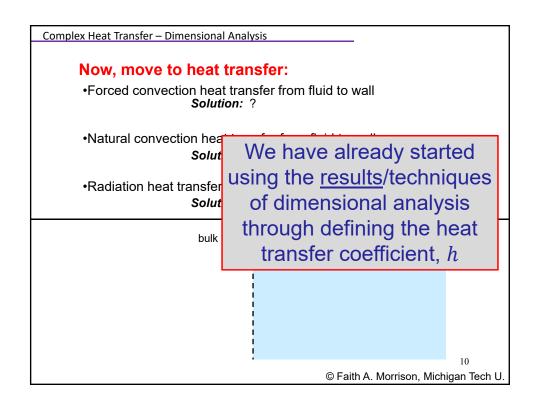
need independent lengthscales

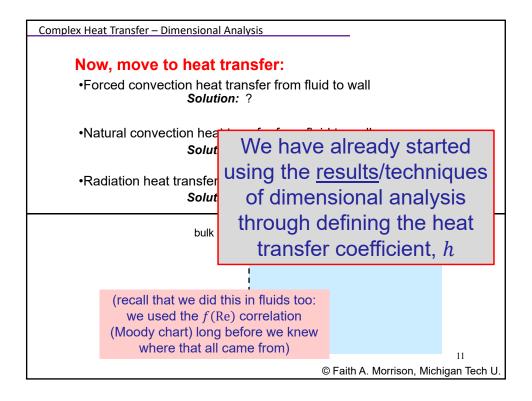
6

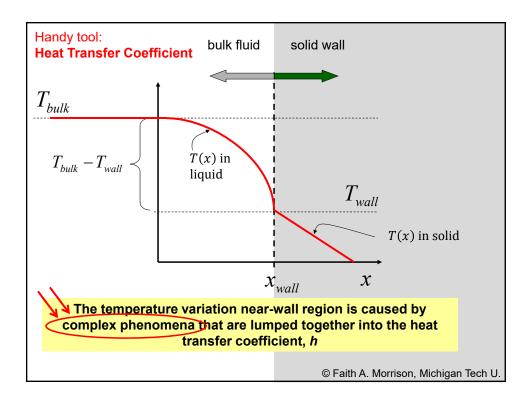












The flux at the wall is given by the empirical expression known as **Newton's Law of Cooling**

This expression serves as the definition of the heat transfer coefficient.

$$\left| \frac{q_x}{A} \right| = h |T_{bulk} - T_{wall}|$$

h depends on:

- •geometry
- •fluid velocity
- •fluid properties
- •temperature difference

13

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

The flux at the wall is given by the empirical expression known as **Newton's Law of Cooling**

This expression serves as the definition of the heat transfer coefficient.

$$\left| \frac{q_x}{A} \right| = h |T_{bulk} - T_{wall}|$$

To get values of *h* for various situations, we need to measure data and create data correlations (dimensional analysis)

h depends on:

- •geometry
- •fluid velocity
- •fluid properties
- •temperature difference

14

Complex Heat transfer Problems to Solve:

•Forced convection heat transfer from fluid to wall **Solution:** ?

•Natural convection heat transfer from fluid to wall

Solution: ?

•Radiation heat transfer from solid to fluid

Solution: ?

- The <u>functional form</u> of h will be different for these three situations (different physics)
- Investigate simple problems in each category, model them, take data, correlate

15

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer – Dimensional Analysis

Chosen problem: Forced Convection Heat Transfer **Solution:** Dimensional Analysis

Following procedure familiar from pipe flow,

- What are governing equations?
- Scale factors (dimensionless numbers)?
- Quantity of interest?

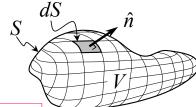
Answer: Heat flux at the wall

16

General Energy Transport Equation

(microscopic energy balance)

As for the derivation of the microscopic momentum balance, the microscopic energy balance is derived on an arbitrary volume, V, enclosed by a surface, S.

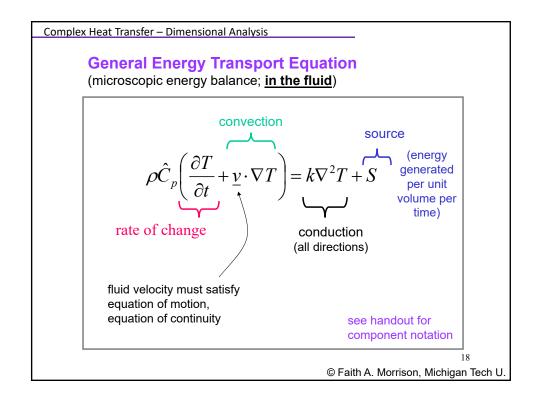


Gibbs notation:

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

see handout for component notation

17



The Equation of Energy for systems with constant $m{k}$

Microscopic energy balance, constant thermal conductivity; Gibbs notation

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T \right) = k \nabla^2 T + S$$

Microscopic energy balance, constant thermal conductivity; Cartesian coordinates

gy balance, constant thermal conductivity; Cartesian coordinates
$$\rho \hat{\mathcal{C}}_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; cylindrical coordinates

$$\rho \hat{C}_p \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + S$$

Microscopic energy balance, constant thermal conductivity; spherical coordinates

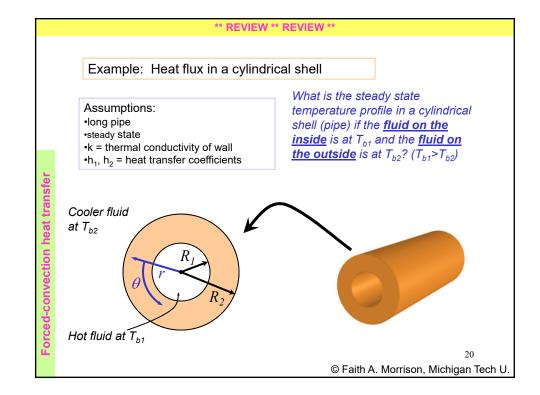
$$\begin{split} \rho \hat{C}_{p} \left(\frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial T}{\partial \phi} \right) \\ &= k \left(\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial T}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}} \right) + \mathcal{S} \end{split}$$

https://pages.mtu.edu/~fmorriso/cm310/energy.pdf

© Faith A. Morrison, Michigan Tech U.

Note: this handout is

also on the



Now: How do develop correlations for h?

Consider: Heat-transfer to from flowing fluid inside of a tube – forced-convection heat transfer

 T_1 = core bulk temperature T_0 = wall temperature $T(r,\theta,z)$ = temp distribution in the fluid

In principle, with the right math/computer tools, we could calculate the complete temperature and velocity profiles in the moving fluid.

21

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

What are governing equations?

Microscopic energy balance plus Navier-Stokes, continuity

Scale factors?

Re, Fr, L/D plus whatever comes from the rest of the analysis

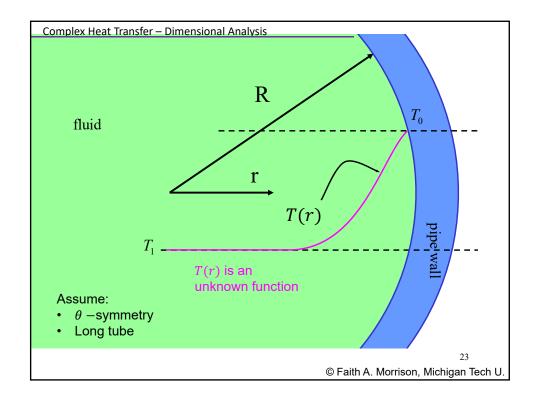
Quantity of interest (like wall force, drag)?

Heat transfer coefficient

The quantity of interest in forced-convection heat transfer is *h*

How is the heat transfer coefficient related to the full solution for $T(r, \theta, z)$ in the fluid?

22



At the boundary, (Newton's Law of Cooling is the boundary condition)

Total heat flow through (at) the wall in terms of *h*

$$\left|\frac{q_r}{A}\right| = h|T_1 - T_0|$$

$$Q = (2\pi RL)(h)(T_1 - T_0)$$

We can calculate the total heat transferred from T(r) in the fluid:

Total heat conducted to the wall <u>from the</u> <u>fluid</u>

$$Q = \iint_{S} \left[\hat{n} \cdot \tilde{q} \right]_{surface} dS$$

$$\tilde{q} = \frac{q_r}{A} = -k \frac{\partial T}{\partial r}$$
We need $T(r)$
in the fluid

24

Equate these two: Total heat flow through the wall

$$(2\pi RL)(h)(T_1 - T_0) = Q = \iint_{S} \left[\hat{e}_r \cdot \underline{\tilde{q}}\right]_{surface} dS$$

Total heat flow at the wall in terms of *h*

$$(2\pi RL)(h)(T_1 - T_0) = Q = \int_0^{2\pi} \int_0^L -k \frac{\partial T}{\partial r} \Big|_{r=R} Rdzd\theta$$

Total heat conducted to the wall from the fluid

25

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

Equate these two: Total heat flow through the wall

$$(2\pi RL)(h)(T_1 - T_0) = Q = \iint_{S} \left[\hat{e}_r \cdot \underline{\tilde{q}}\right]_{surface} dS$$

$$(2\pi RL)(h)(T_1 - T_0) = \frac{Q}{Q} = \int_0^{2\pi} \int_0^L -k \frac{\partial T}{\partial r} \Big|_{r=R} Rdzd\theta$$

Now, non-dimensionalize this expression

26

Non-dimensionalize

non-dimensional variables:

position:

$$r^* \equiv \frac{r}{D}$$

$$z^* = \frac{z}{D}$$

temperature:

$$T^* \equiv \frac{T - T_o}{(T_1 - T_o)}$$

27

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

$$h(\pi QL)(T_1 - T_o) = \int_{0}^{2\pi} \int_{0}^{L/D} -k \frac{\partial T^*}{\partial r^*} \Big|_{r^* = 1/2} \frac{(T_1 - T_o)}{D} \frac{D^2}{2} dz^* d\theta$$

$$2\pi \left(\frac{hD}{k}\right) \left(\frac{L}{D}\right) = \int_{0}^{2\pi} \int_{0}^{L/D} -\frac{\partial T^{*}}{\partial r^{*}} \bigg|_{r^{*}=1/2} dz^{*} d\theta$$

Nusselt number, Nu

(dimensionless heattransfer coefficient)

$$Nu = Nu\left(T^*, \frac{L}{D}\right)$$

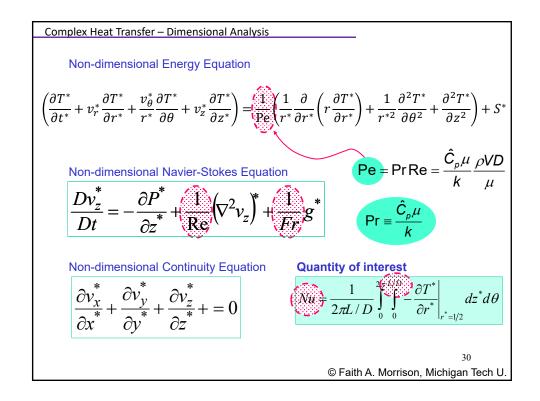
one additional dimensionless group

28

Complex Heat Transfer – Dimensional Analysis
$$h(\pi QL)(T_1 - T_0) = \int_0^{2\pi} \int_0^{L/D} -k \frac{\partial T}{\partial r} \Big|_{r^* = 1/2} \frac{(T_0)}{P} \frac{\partial T}{\partial r} \frac{\partial T}{\partial r} d\theta$$

$$2\pi \left(\frac{hD}{k}\right) \left(\frac{L}{D}\right) = \int_0^{2\pi} \int_0^{L/D} \frac{\partial T}{\partial r} \Big|_{r^* = 1/2} \frac{\partial T}{\partial r} d\theta$$
This is a function of Re through fluid \underline{v} distribution
$$dz^* d\theta$$
Nusselt number, Nu (dimensionless heat-transfer coefficient)
$$Nu = Nu \left(T^*, \frac{L}{D}\right)$$
one additional dimensionless group

© Faith A. Morrison, Michigan Tech U.



According to our **dimensional analysis** calculations, the dimensionless heat transfer coefficient should be found to be a function of <u>four</u> dimensionless groups:

three

no free surfaces

Peclet number

$$Pe \equiv \frac{\rho \hat{c}_p VD}{k} = \frac{\hat{c}_p \mu}{k} \frac{\rho VD}{\mu}$$

Prandtl number

$$Pr \equiv \frac{\hat{c}_{p}\mu}{k}$$

 $Nu = Nu\left(\text{Re}, \text{Pr}, \text{Fr}, \frac{L}{D}\right)$

Now, do the experiments.

31

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

Now, do the experiments.

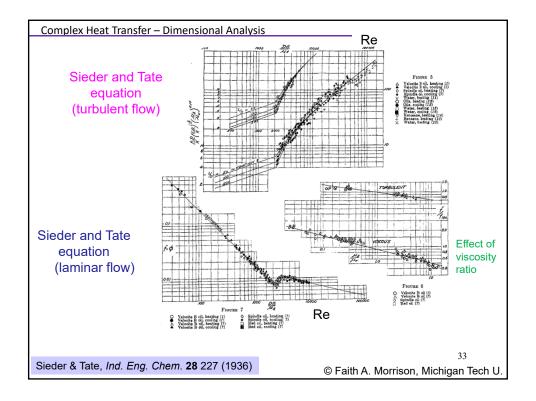
Forced Convection Heat Transfer

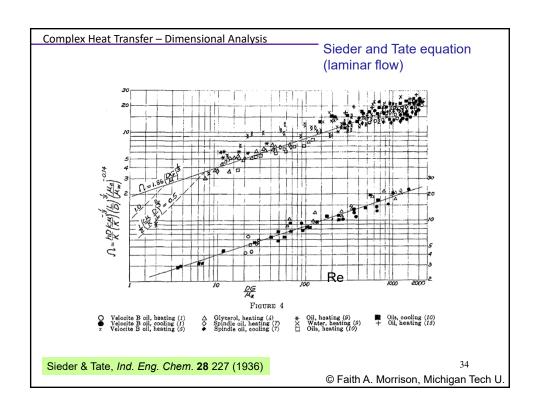
- · Build apparatus (several actually, with different D, L)
- Run fluid through the inside (at different \underline{v} ; for different fluids ρ , μ , \hat{C}_{p} , k)
- Measure T_{bulk} on inside; T_{wall} on inside
- Measure rate of heat transfer, Q
- Calculate $h: |Q| = hA|T_{bulk} T_{wall}|$
- Report *h* values in terms of dimensionless correlation:

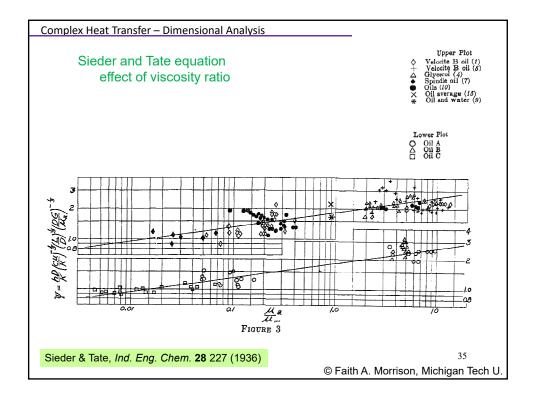
$$Nu = \frac{hD}{k} = f\left(\text{Re, Pr, } \frac{L}{D}\right)$$

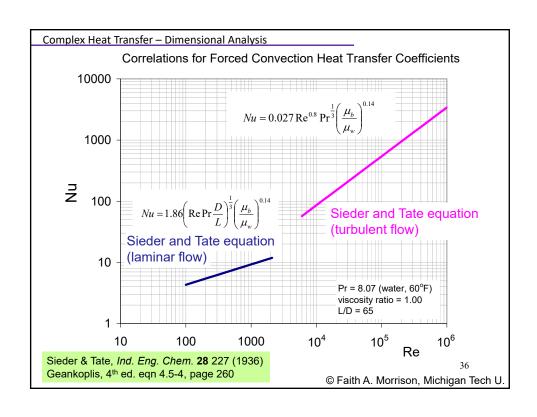
It should only be a function of these dimensionless numbers (<u>if</u> our Dimensional Analysis is correct.....)

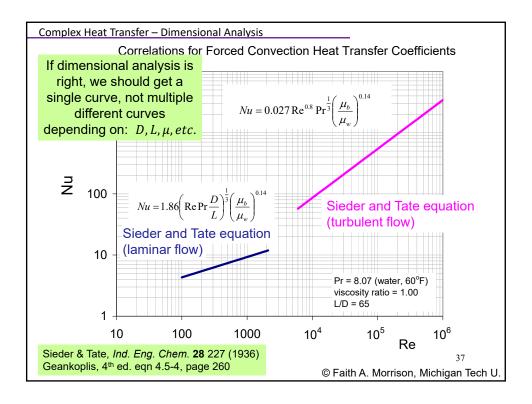
32

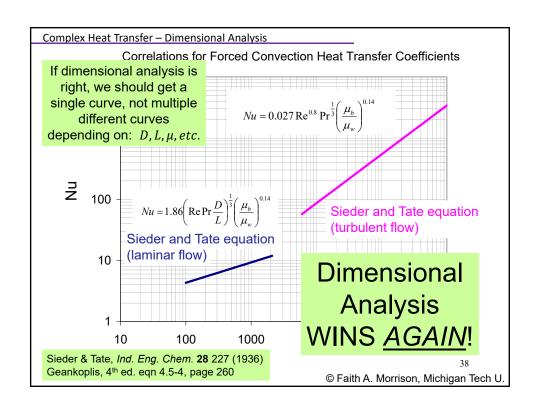












Heat Transfer in **Laminar** flow in pipes:

data correlation for forced convection heat transfer coefficients

$$Nu_a = \frac{h_a D}{k} = 1.86 \left(\text{Re Pr } \frac{D}{L} \right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

Sieder-Tate equation (laminar flow)

Sieder & Tate, Ind. Eng. Chem. **28** 227 (1936)

the subscript "a" refers to
the type of average
temperature used in
calculating the heat flow, q

$$q = h_a A \Delta T_a$$
$$\Delta T_a = \frac{(T_w - T_{bi}) + (T_w - T_{bo})}{2}$$

Geankoplis, 4th ed. eqn 4.5-4, page 260

Re < 2100, $(RePr\frac{D}{L}) > 100$, horizontal pipes; all physical properties evaluated at the mean temperature of the bulk fluid except μ_w which is evaluated at the (constant) wall temperature.

39

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

Heat Transfer in **Turbulent** flow in pipes:

data correlation for forced convection heat transfer coefficients

$$Nu_{lm} = \frac{h_{lm}D}{k} = 0.027 \text{Re}^{0.8} \text{Pr}^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$

Sieder-Tate equation (turbulent flow)

Sieder & Tate, Ind. Eng. Chem. 28 227

the subscript "Im" refers to the type of average temperature used in calculating the heat flow, q

$$q = h_{lm} A \Delta T_{lm}$$

$$\Delta T_{lm} = \frac{\Delta T_{w-bi} - \Delta T_{w-bo}}{\ln\left(\frac{\Delta T_{w-bi}}{\Delta T_{w-bo}}\right)}$$

Geankoplis, 4th ed. section 4.5

40

Forced convection

Heat Transfer in Laminar flow in pipes

$$Nu_a = \frac{h_a D}{k} = 1.86 \left(\text{RePr} \frac{D}{L} \right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

Sieder-Tate equation (laminar flow)

Forced convection

Heat Transfer in Turbulent flow in pipes

$$Nu_{lm} = \frac{h_{lm}D}{k} = 0.027 \text{Re}^{0.8} \text{Pr}^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$

Sieder-Tate equation (turbulent flow)

Fine print

matters!

bulk mean temperature

May have to be

estimated

Physical Properties

evaluated at:

evaluated at the bulk mean temperature

© Faith A. Morrison, Michigan Tech U.

Complex Heat Transfer - Dimensional Analysis

Forced convection Heat Transfer in Laminar flow in pipes

•all physical properties (except μ_w)

·Laminar or turbulent flow

In our dimensional analysis, we assumed constant ρ , k, μ , etc. Therefore we did not predict a viscosity-temperature dependence. If viscosity is not assumed constant, the dimensionless group shown below is predicted to appear in correlations.

$$Nu_a = \frac{h_a D}{k} = 1.86 \left(\text{Re Pr } \frac{D}{L} \right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

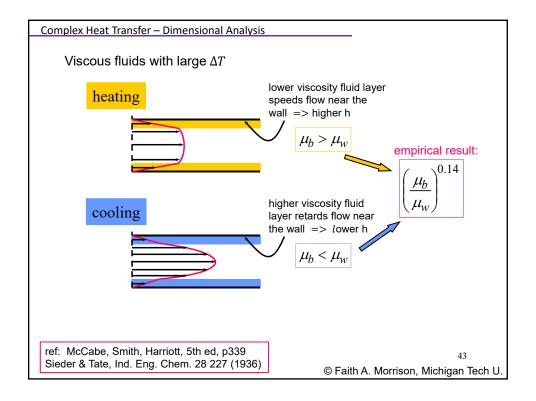
Eng. Chem. 28 227

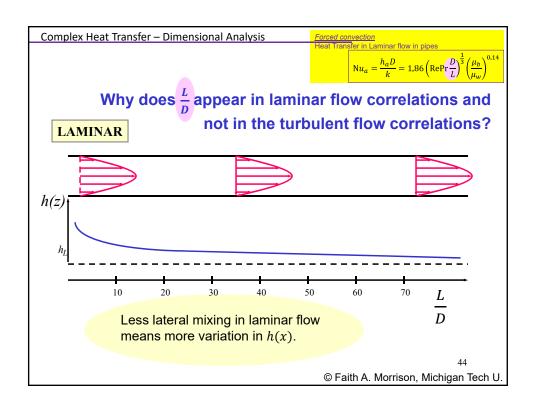
Sieder & Tate Ind

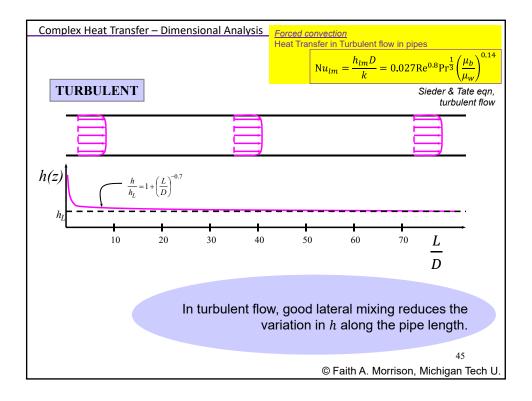
Sieder-Tate equation (laminar flow)

(reminiscent of pipe wall roughness; needed to modify dimensional analysis to correlate on roughness)

42







(Exam 4 2016)

Example:

Water flows at $0.0522\ kg/s$ (turbulent) in the inside of a double pipe heat exchanger (inside steel pipe, inner diameter= $0.545\ inches$, length unknown, physical properties given on page 1); the water enters at $30.0^{\circ}C$ and exits at $65.6^{\circ}C$. In the shell of the heat exchanger, steam condenses at an unknown saturation pressure. What is the heat transfer coefficient, h_{lm} (based on log mean temperature driving force) in the water flowing in the pipe? You may neglect the effect on heat-transfer coefficient of the temperature-dependence of viscosity. Please give your answer in W/m^2K .

Physical properties of steel: thermal conductivity = $16.3 \ W/mK$ heat capacity = $0.49 \ kJ/kg \ K$ density = $8050 \ kg/m^3$

46

Complex Heat Transfer – Dimensional Analysis				
Example of <i>partial</i> solution to Homework 6 (bring to final exam)				
	laminar flow in pipes	$Nu_a = \frac{h_a D}{k} = 1.86 \left(\text{Re} \text{Pr} \frac{D}{L} \right)^{\frac{1}{3}} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$ Sieder-Tate equation (laminar flow)	Re<2100, (RePrD/L)>100, horizontal pipes, eqn 4.5-4, page 238; all properties evaluated at the temperature of the bulk fluid except μ_w which is evaluated at the wall temperature.	(T _{bulk} mean)
	turbulent flow in smooth tubes	$Nu_{lm}=rac{h_{lm}D}{k}=0.027\mathrm{Re^{0.8}Pr^{1\over 3}}\!\!\left(rac{\mu_b}{\mu_w} ight)^{0.14}$ Sieder-Tate equation (turbulent flow)	Re>6000, 0.7 <pr <16,000,<br="">L/D>60, eqn 4.5-8, page 239; all properties evaluated at the mean temperature of the bulk fluid except μ_w which is evaluated at the wall temperature. The mean is the average of the inlet and outlet bulk temperatures; not valid</pr>	
	air at 1atm in turbulent flow in pipes	$h_{lm} = \frac{3.52V(m/s)^{0.8}}{D(m)^{0.2}}$ $h_{lm} = \frac{0.5V(ft/s)^{0.8}}{D(ft)^{0.2}}$	for liquid metals. equation 4.5-9, page 239	
	water in turbulent flow in pipes	$h_{lm} = 1429(1 + 0.0146T({}^{o}C))\frac{V(m/s)^{0.8}}{D(m)^{0.2}}$ $h_{lm} = 150(1 + 0.011T({}^{o}F))\frac{V(ft/s)^{0.8}}{D(ft)^{0.2}}$	4 < T(°C)<105, equation 4.5- 10, page 239	
47 © Faith A. Morrison, Michigan Tech U.				
© Faith A. Montson, Michigan Tech C.				

