CM3215
Fundamentals of Chemical Engineering Laboratory
Whationtier

Typing
Equations in MS Word 2010
https://www.youtube.com/watch?v=ceNp9meHTmY

Professor Faith Morrison

CM3215
CHaticenter
Fundamentals of Chemical Engineering Laboratory

Orifice Flow Meters

MEB: Apply MEB between upstream point (1) and a point in the vena contracta (2):

$$
\frac{\Delta p}{\rho}+\frac{\Delta\left(\langle v\rangle^{2}\right)}{2}+g\left\langle z+\hbar=\frac{w_{s}, o n}{\dot{m}}\right.
$$

$\Delta p_{\text {orifice }} \frac{p_{2}-p_{1}}{\rho}+\frac{\langle v\rangle_{2}^{2}-\langle v\rangle_{1}^{2}}{2}=0$
Macroscopic mass balance:

$$
\frac{\langle v\rangle_{1} \pi D^{2}}{4}=\frac{\langle v\rangle_{2} \pi D_{0}^{2}}{4}
$$

Orifice Flow Meters

Apply MEB between upstream point and a point in the vena contracta; combine with mass balance:

$$
\operatorname{Re} \equiv \frac{\rho\left\langle v_{z}\right\rangle D}{\mu}
$$

This combination of experimentally measureable variables is the key number that correlates with the flow regime that is observed. In a pipe:
-Laminar (Re < 2100)
-Transitional
-Turbulent ($\mathrm{Re}>4000$)
O. Reynolds'
Dye Experiment, 1883
Transitional flow

$$
\operatorname{Re} \equiv \frac{\rho\left\langle v_{z}\right\rangle D}{\mu}
$$

Turbulent flow

Images: www.flometrics.com/reynolds_experiment.htm accessed 4 Feb 2002

FLOMETRICS

Flow Regimes in a Pipe

-chaotic - fluctuations within fluid -transverse motions
-unpredictable - deal with average motion -most common

$$
\operatorname{Re} \equiv \frac{\rho\left\langle v_{z}\right\rangle D}{\mu}
$$

```
\rho= density
\langlevz
D = true pipe inner diameter
\mu= viscosity
( }\mp@subsup{p}{0}{}-\mp@subsup{p}{L}{}\mathrm{ ) = pressure drop
L= pipe length \(L=\) pipe length
```

(This is a definition)

(This comes from applying the definition of friction factor f to pipe flow)
Data may be organized in terms of two dimensionless parameters:
Flow
rate $\left\{\begin{array}{c}\text { Reynolds Number } \\ \operatorname{Re} \equiv \frac{\rho\left\langle v_{z}\right\rangle D}{\mu}\end{array}\right.$

Data may be organized in terms of two dimensionless parameters:
Flow
rate $\left\{\begin{array}{l}\text { Reynolds Number } \\ \operatorname{Re} \equiv \frac{\rho\left\langle v_{z}\right\rangle D}{\mu}\end{array}\right.$
Pressure
Drop $\begin{cases}\text { Fanning Friction Factor } & \begin{array}{l}\text { (This comes from applying } \\ \text { the definition of friction } \\ \text { factor } f \text { to pipe flow) }\end{array} \\ f=\frac{\frac{1}{4} \Delta p_{\text {pipe }}}{\frac{L}{D}\left(\frac{1}{2} \rho\left\langle v_{z}\right\rangle^{2}\right)} & \end{cases}$

$$
\rho=\text { density }
$$

$$
\left\langle v_{z}\right\rangle=\text { average velocity }
$$

$D=$ true pipe inner diameter $\mu=$ viscosity
($p_{0}-p_{L}$) = pressure drop $L=$ pipe length rate

For now, we measure this μ
-

In a few weeks, we measure this as well

Experimental Notes

- Measure orifice pressure drop $\Delta p_{\text {orifice }}$ with Honewell DP meter (low pressure drops) or Bourdon gauges (high pressure drops)
- Determine uncertainty for all measurements (reading error, calibration error, error propagation)
- DP meter has valid output only from $4-20 \mathrm{~mA}$ - above 20 mA it is over range (saturated)
- What is lowest accurate Δp that you can measure with the Honeywell DP meter? With the Bourdon gauges? Consider your uncertainties. (At what point will the error be 100% of your signal? What's your tolerance for \%error?)
- True triplicates must include all sources of random error
(All steps that it takes to move the system to the operating condition must be taken for each replicate. Thus, setting the flowrate with the needle valve and the rotameter must be done for each replicate.)
- Watch level of Tank-01 (there is no overflow protection)

Report Notes

- Design your graphs to communicate a point clearly (chart design); you may make multiple graphs with the same data if they are needed to make your point.
- The axes of your graphs must reflect the correct number of significant figures for your data.
- Calculate averages of triplicates (needed for replicate error)
- Do not use the averages in calibration-curve fitting (use unaveraged data and LINEST).
- Use LINEST to determine confidence intervals on slope and intercept
- True inner diameter of type L copper tubing may be found in the Copper Tube Handbook (see lab website). The sizes $1 / 4$, $1 / 2$, and $3 / 8$ are called nominal pipe sizes.
CM3215 Fundamentals of Chemical Engineering Laboratory
Lab: Calibrate Rotameter and Explore Reynolds Number
-Pump water through pipes of various diameters

PreLab Assignment

- Familiarize yourself with Reynolds number, rotameters, and orifice meters.
- Find a good estimate of the calibration curve for the DP meter at your lab station (cycle 2) and have the equation and plot in your lab notebook.
- Prepare a safety section
- Prepare data acquisition tables
- Answer these questions in your lab notebook:

1. What should you plot (what versus what) to get a straight line correlation out of the orifice meter calibration data?
2. In this experiment we calibrate the rotameter for flow directed through $1 / 2^{\prime \prime}$, $3 / 8^{\prime \prime}$, and $1 / 44^{\prime \prime}$ pipes (nominal sizes); will the calibration curve be the same for these three cases, or different?
3. What is "dead heading" the pump?

CM3215

Station 1 Archive (uncorrected)

Station 1 Archive (corrected for obvious errors)

Station 1 Archive (corrected for obvious errors)

Station 1 Archive (corrected for obvious errors)

Historical, 95\% CI:

We are 95\% confident that the true values of the slope and intercept are within these intervals.
(if only random error is present)

If we know this point is on our correlation line, we can solve for a value of b, independent of the systematic offset in the data.

Another Error-Related question:

$$
(\Delta p ; p s i)=(\bar{m})(I ; m A)+b
$$

What's the lowest accurate Δp ?

Can we measure
$\Delta p=10 p s i$?
$1 p s i$?
$0.1 p s i$? $0.01 p s i$? 0.001psi? $0.0001 p s i$?

When will the value be indistinguishable from the noise (error)?

Another Error-Related question:

$$
(\Delta p ; p s i)=(\bar{m})(I ; m A)+b
$$

What's the lowest accurate Δp ?

$$
\Delta p=\Delta p_{\substack{\text { predicted } \\ \text { from } \\ \text { calibration } \\ \text { curve }}} \pm 2 s_{y_{p}}
$$

Another Error-Related question:
 $$
(\Delta p ; p s i)=(\bar{m})(I ; m A)+b
$$

What's the lowest accurate Δp ?

$$
\begin{gathered}
\Delta p=\Delta p \text { predicted } \pm 2 s_{y_{p}} \\
\text { from } \\
\text { calibration } \\
\text { curve }
\end{gathered}
$$

Another Error-Related question:

$$
(\Delta p ; p s i)=(\bar{m})(I ; m A)+b
$$

What's the lowest accurate Δp ?

$$
\begin{gathered}
\Delta p=\Delta p \text { predicted } \pm 2 s_{y_{p}} \\
\text { from } \\
\text { calibration } \\
\text { curve }
\end{gathered}
$$

Another Error-Related question:

$$
(\Delta p ; p s i)=(\bar{m})(I ; m A)+b
$$

What's the lowest accurate Δp ?

$$
\Delta p=\Delta p \text { predicted } \pm 2 s_{y_{p}}
$$

Another Error-Related question:

$$
(\Delta p ; p s i)=(\bar{m})(I ; m A)+b
$$

What's the lowest accurate Δp ?

$$
\Delta p=\Delta p \text { predicted } \pm 2 s_{y_{p}}
$$

The choice is up to you.

Summary

- We can omit "blunders" from data sets
- We are always looking for possible sources of systematic error
- When a systematic error is identified (leftover water in unequal amounts on the two sides of the DP meter), we are justified in making adjustments to our correlations
- Note that the units of Δp are $p s i$ not $p s i g$. You've subtracted two numbers:

$$
\Delta p=p_{1}-p_{2}
$$

For example:

$$
p_{1}=5 p s i g=6 p s i a
$$

$$
p_{2}=0 p s i g=1 p s i a
$$

$$
\Delta p=5 p s i=5 p s i
$$

- The lowest number you can accurately report depends on your tolerance for uncertainty (25% max relative error is a good rule of thumb $\Rightarrow \Delta p_{\text {min }} \approx 8 s_{y_{p}}$)

Summary

- We can omit "blunders" from data sets
- We are always looking for possible sources of systematic error
- When a s amounts making a
- Note that two numb

Pay attention to pressures, and Δp 's: we measure many different pressures and Δp 's and often there is confusion	ed in

- The lowest number you can accurately report depends on your tolerance for uncertainty (25% max relative error is a good rule of thumb $\Rightarrow \Delta p_{\text {min }} \approx 8 s_{y_{p}}$)

