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Using the Hagen-Poiseuille equation, which is only correct for laminar flow, greatly
underestimates the frictional drag present in pipes. The true estimate of flow rate in house-
hold pipes (according to the internet it is around 20 gal/min) is two orders of magnitude
lower than what we calculated in the laminar example. The large discrepancy between the
laminar prediction and what is observed is evidence that the flow in household pipes is not
laminar. To correctly solve the burst-pipe problem we need to know more about turbulent
flow.

Turbulent flow can not be solved directly by following the microscopic momentum
balance from start to finish as we did for laminar flow, but we can modify our approach by
incorporating experimental observations and arrive at important results for turbulent flow,
including the flow-rate/pressure-drop relationship. We pursue turbulent flow modeling in
the next section.

There are important flows for which the laminar-flow solution and the Hagen-Poiseuille
equation are appropriate, such as in glass-tube viscometers, which are employed to find the
viscosity of fluids. We show how the Hagen-Poiseuille equation applies to such instruments
in the example below.

EXAMPLE How does the measurement of efflux time At in a Cannon-
Fenske routine viscometer (Figure 8.11) allow us to deduce the viscosity of the
fluid?

SOLUTION The Cannon-Fenske viscometer is a glass apparatus that has
two fluid reservoirs connected by a tilted capillary tube (Figure 8.11). The cap-
illary tube is manufactured to be very straight and of uniform inside diameter.
An appropriate volume is charged to the lower reservoir, and, after equilibration
at constant temperature, this fluid is drawn up through the capillary to fill the
second reservoir to overfull. The fluid level is then allowed to drop under the pull
of gravity, and the time it takes for the fluid meniscus to pass between the two
marks shown in Figure 8.11 is the eflux time At.

The flow through the capillary may be analyzed as shown in Figure 8.12.
Fluid in the amount that fits in the upper reservoir, volume AV, flows through a
capillary of length L. The time it takes for that fluid to pass through the capillary
is the efflux time A¢. Thus, the measured flow rate () through the capillary is
Q = AV/AL.

Measured flow rate AV
through capillary Q=—
in viscometer At

(8.48)

The flow rate through a capillary as a function of system variables was solved
for in the previous discussion, and the result is the Hagen-Poiseuille equation
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Figure 8.11: The Cannon-Fenske viscometer, a variation on the Ostwald viscometer invented
by Wilhelm Ostwald, has two fluid reservoirs connected by a tilted capillary tube. The fluid
is drawn up through the capillary to fill the second reservoir to overfull. The fluid level is
then allowed to drop, and the time it takes for the fluid meniscus to pass between the two
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marks shown is the efflux time At.

(with gravity), equation 8.27.

Hagen-Poiseuille Q= 7(po — pr + pgL) R

(gravity g, = g included) = Sl (8.49)

Because the capillary is tilted, gravity is not in the flow (é,) direction, but is tilted
from é, by an angle 6 (Figure 8.13). To apply equation 8.49 to the Cannon-Fenske
system defined in Figure 8.12, we substitute the correct z-component of gravity
(g cos @) for the z-component of gravity that was used in the derivation (g).

Hagen-Poiseuille ~ 7(po — pL+ pgcosGL)R?

(gravity g, = gcosf included) Q= Sul (8.50)
We now substitute () from equation 8.48 and solve for At.
_ AV _ 7(po — pr, + pg cos OL) R* (8.51)

At 8ulL
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Figure 8.12: Schematic of the operation of a Cannon Fenske viscometer. A volume of fluid

AV is timed as it passes through a capillary of length L.

TRt \ B + pgcosd

At = 8MV( ! ) (8.52)

The pressure at the top of the capillary is very nearly atmospheric, and the
pressure at the bottom of the capillary is also very nearly atmospheric; taking
po — pr =~ 0 (see problem 8.30 for corrections to this assumption), we obtain our
final result.

SUAV
loflux = At = ————— 8.93
. wR*pg cos 6 (8.53)
Efflux time
in Cannon-Fenske Al = _SvAV (8.54)
: wRYg cosf
viscometer

where v = p/p is the kinematic viscosity of the fluid. We can thus write the
kinematic viscosity in terms of viscometer dimensions and the measured efflux
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Figure 8.13: We can use geometry to relate the direction of the flow (along the tilted capillary,
cylindrical coordinate é,) to the direction of gravity (vertically down, Cartesian coordinate
és.

time as follows:

Kinematic viscosity

obtained with TR cos
Cannon-Fenske = (T ICT A (8.55)
. SAV
viscometer

(po — pr neglected)

The angle 6 depends on how the viscometer is mounted during experimental op-
eration; for that reason, experimentalists use great care in vertically aligning the
viscometer. The values of R and AV are fixed at the time of device manufacture.

Everything in parentheses in equation 8.55 is fixed for a given viscometer,
although dimensions such as AV and R vary slightly from instrument to instru-
ment. As a matter of practicality, each viscometer is supplied by the manufac-
turer with a calibration constant that replaces the quantity in parentheses in
equation 8.55. The calibration constant, which is a function of temperature, is
determined at the factory by measuring efflux time At for a material of known
kinematic viscosity v. This approach has the added advantage of accounting for
the small neglected pressure difference, since the neglected pressure difference
will have been present during calibration. Thus, the final operating equation for
the Cannon-Fenske viscometer is

correction 4
(M) At (8.56)

= factor f
v actor for SAV
Po —PL
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Kinematic viscosity
obtained with
Cannon-Fenske v(T) = o(T)AlL (8.57)

viscometer
(po — pr, accounted for)

where «(T') is the temperature-dependent calibration constant supplied by the
manufacturer for a given viscometer. Note that in order for accurate viscosities to
be measured, Cannon-Fenske viscometers must be charged with a standardized
volume of material; excess fluid alters the back-pressure (pr) and introduces vari-
ability not accounted for by the calibration (see problem 8.31 for more discussion
on this issue).

The solution strategy of this section is general and may be used to solve for velocity and
stress fields for well-defined flows. When the geometry or flow circumstances are complex,
computer-implemented numerical methods[178] may be employed to solve the Navier-Stokes
equations for v and 7. We follow the methodology of this section to solve the Navier-Stokes
equations for other flows in sections 8.2 and 8.3 and in Chapter 9.

We turn now to the burst-pipe problem and our need for information on turbulent
flow.

8.1.2 Turbulent Flow in Pipes

In the previous section we sought to calculate the flow rate in the burst-pipe example using
a result from laminar flow. The formula that we used was the Hagen-Poiseulle equation, an
equation that relates pressure-drop to flow rate for laminar pipe flow.

Hagen-Poiseuille equation: 4
m(po — pr) R
(Q(Ap) for Q= “908—72“ (8.58)
laminar tube-flow) H

We found that the burst-pipe result predicted by this laminar-flow equation was not cor-
rect; the predicted flow rate was almost two orders of magnitude too high. Our error in
that calculation was to use a laminar-flow relationship to make a prediction in turbulent
flow. To complete the burst-pipe calculation correctly, we need the flow-rate/pressure-drop
relationship for turbulent flow in pipes.

We can seek the turbulent-flow flow-rate/pressure-drop relationship by following the
same steps we used to develop the laminar-flow relationship. As we attempt to follow that
process, we hope to see why and how the method fails in turbulent flow. The steps leading
to the Hagen-Poiseuille equation (equation 8.58) were the following:



