Homework 3 an 4650 Solution

1.  $A + A^{T} = A_{ij} \hat{e}_{i} \hat{e}_{j} + (A_{pk} \hat{q}_{j} \hat{e}_{k})$   $= A_{ij} \hat{e}_{i} \hat{e}_{j} + A_{pk} \hat{e}_{k} \hat{e}_{j}$   $\downarrow_{i \to m}$   $\downarrow_{k \to m}$ 

= Ams ênês Asm ênês

= (Ams + Asm) Êm Ês

Which is Symmetric (switching m & s gives the some tensor.)  $A - A = A_{ij} e_{i} e_{j} - A_{pk} e_{k} e_{p}$   $\vdots \rightarrow m$   $k \rightarrow m$ = Ams ênês - Asm ênês = (Ams - Asm) Em ls Which is antisymmetric

Which is antisymmetric (Switching m & s gives the resoltine of the result.)

$$\frac{A}{2} = 5\hat{e}, \hat{e}, + 3\hat{e}, \hat{e}_{z} - 3\hat{e}, \hat{e}_{s} \\
-\hat{e}_{z}\hat{e}, -\hat{e}_{z}\hat{e}_{z} + 2\hat{e}_{z}\hat{e}_{s} \\
-3\hat{e}_{s}\hat{e},$$

$$= \begin{pmatrix} 5 & 3 & -3 \\ -1 & -1 & 2 \\ -3 & 0 & 0 \end{pmatrix}$$

$$A = A \cdot A$$

$$\frac{A}{4} = (5)^{2} + (-1)(3) + (-3)(-3) 
+ (-1)(3) + (-1)^{2} + 2(0) 
+ (-3)(-3) + 0(2) + 0^{2}$$

$$= 25 - 3 + 9 - 3 + 1 + 9$$

$$= 30$$

$$\sqrt{A \cdot A} = \sqrt{\frac{38}{2}} = \sqrt{19}$$

$$\frac{A \cdot A}{=} = \begin{pmatrix} 3 & 10.2 & 0 \\ 10.2 & 0 & 0 \\ 0 & 0 & -3 \\ 103 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 102 & 0 \\ 102 & 0 & 0 \\ 0 & 0 & -3 \\ 103 & 0 & 0 \end{pmatrix}$$

We con also use Excel (or other program). I used Excel

for B.

We can more easily do these matrix calculations in Excel (Matlab, Mathcad, Mathematica). I used Excel, using the matrix command MMULT(array1,array2) (must enter with "CTRL+SHIFT+ENTER). I did not use the MDETERM function as it seems to give the wrong sign for the determent.

|       |          |          |     | Trace |        | From definition p453:  |         |
|-------|----------|----------|-----|-------|--------|------------------------|---------|
| Α     | 3        | 10.2     | 0   | l=    | 0      | Θ=                     | 0       |
|       | 10.2     | 0        | 0   |       |        | Ф=                     | -113.04 |
|       | 0        | 0        | -3  |       |        | Ψ=                     | 312.12  |
|       | :        |          |     |       |        |                        |         |
| A.A   | 113.04   | 30.6     | 0   | II=   | 226.08 | from relations on p476 |         |
|       | 30.6     | 104.04   | 0   |       |        | Θ=                     | 0       |
|       | 0        | 0        | 9   |       |        | Φ=                     | -113.04 |
|       |          |          |     |       |        | Ψ=                     | 312.12  |
| A.A.A | 651.24   | 1153.008 | 0   | -     | 936.36 |                        |         |
|       | 1153.008 | 312.12   | 0   |       |        |                        |         |
|       | 0        | 0        | -27 |       |        |                        |         |

|       |    |    |      | Trace                       |      | From definition p453: |          |
|-------|----|----|------|-----------------------------|------|-----------------------|----------|
| В     | 4  | 0  | 0    | -                           | 0    | Θ=                    | 0        |
|       | 0  | 4  | 0    |                             |      | Φ=                    | -48      |
|       | 0  | 0  | -8   |                             |      | Ψ=                    | -128     |
|       |    |    |      |                             |      |                       |          |
| B.B   | 16 | 0  | 0    | II= 96 from relations on p4 |      |                       | on p476: |
|       | 0  | 16 | 0    |                             |      | Θ=                    | 0        |
|       | 0  | 0  | 64   |                             |      | Φ=                    | -48      |
|       |    |    |      |                             |      | Ψ=                    | -128     |
| B.B.B | 64 | 0  | 0    | III=                        | -384 |                       |          |
|       | 0  | 64 | 0    |                             |      |                       |          |
|       | 0  | 0  | -512 |                             |      |                       |          |



$$T = -M(3) \stackrel{?}{\times}$$

$$M(3) = \begin{cases} M_0 & 3 = 3 \\ m_3 & 3 > 3 \end{cases}$$

Stean Stant up:

$$\mathcal{L} = \begin{pmatrix} \dot{S} + \lambda \chi_{2} \\ 0 \end{pmatrix}$$

$$\mathcal{L} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} = \begin{vmatrix} \dot{S} + \lambda z \\ 0 \end{vmatrix} =$$

ASIDE: 
$$y = \sqrt{\frac{3}{5}} = \sqrt{\frac{3$$

$$\dot{S}(4) = \begin{cases} 0 & t < 0 \\ \dot{8}_0 & t \ge 0 \end{cases}$$

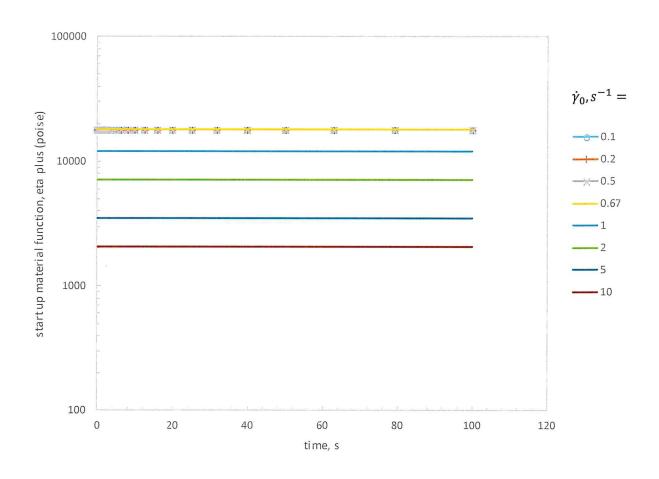
$$= -M/s$$
  $= -M/s$   $=$ 

$$\eta^{t}(+) = -\frac{c_{z_1}}{\delta_0}$$

$$= \left(-\frac{1}{20}\right)\left(-M\dot{S}(4)\right)$$

$$=\frac{5/4}{80}\begin{cases}M_0&8<82\\m_0&3>8\end{cases}$$

(Problem 4): Note that for  $\dot{\gamma} < \dot{\gamma}_C$ , the step up is to 18,000 poise. For larger  $\dot{\gamma}$ , the start-up function rises to a lower and lower value (shear thinning).



$$W^{\dagger} = -\left(\frac{C_{11} - C_{22}}{\dot{v}_{o}^{2}}\right) = 0$$

$$\frac{\sqrt{1}}{\sqrt{2}} = -\left(\frac{\zeta_{12} - \zeta_{33}}{\dot{\zeta}_{0}^{2}}\right) = 0$$

S) 
$$= A(\nabla V \cdot (\nabla V)) + BW + c(\nabla V)^T$$

$$\nabla Y \cdot (\nabla Y)^T = \frac{\partial}{\partial x_p} \hat{Q}_p \nabla_m \hat{Q}_m \cdot (\frac{\partial}{\partial x_s} \hat{Q}_s \nabla_u \hat{Q}_u)$$

One in become a

which is symmetric.

But, TY, (DI) are not symmetric.

For the ownall expression to be symmetric  $B(\nabla V) + C(\nabla V)$ must be symmetric, i.e. B = C

Newtonian:

Elongational Flow;

$$\dot{S} = \frac{1}{2}(4)$$
0
0
0
0
0
2\(\frac{1}{2}(4)\)
123

Sten growth 
$$(stant up)$$
:  $\dot{z}(t) = \begin{cases} 0 & t < 0 \\ \dot{z}_0 & t > 0 \end{cases}$ 

Newtonian:

$$C = -\lambda \delta$$

$$= \begin{pmatrix} \lambda \sin(4) & 0 & 0 \\ \lambda \sin(4) & 0 & 0 \\ 0 & \lambda \sin(4) & 0 \\ 0 & 0 & -\lambda \sin(4) \end{pmatrix}_{123}$$

$$\gamma_e^+ = -(\zeta_{33} - \zeta_{11})$$

$$\dot{\zeta}_o$$

$$= -\left(-2 \operatorname{LS}(4) - \operatorname{LS}(4)\right)$$

$$\dot{S}_{0}$$

$$\frac{y^{t}}{z^{s}} = \frac{3h \dot{z}(t)}{\dot{z}_{o}} = \frac{3h}{\dot{z}_{o}} \begin{cases} 0 & t < 0 \\ \dot{z}_{o} & \dot{z}_{o} \end{cases} \dot{z}_{o}$$

$$7(t) = \begin{cases} 0 & t < 0 \\ 3n & t \geq 0 \end{cases}$$