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We have made considerable progress in our quest to relate red-fluid momentum changes
to momentum changes of the fluid in the control volume. To proceed further, we write
mathematical expressions for the two quantities expressed in words on the right-hand side of
equation 3.67. These two quantities are entering and exiting fluid momenta at t +Δt, that
is, momenta of fluid that crosses the control-volume boundaries. Both of these expressions
can be written following the same approach; the calculation results in a double integral over
the control-volume bounding surfaces.

The final mathematical expression for the terms in equation 3.67 are given in equa-
tion 3.133, and some readers on first reading may choose to proceed ahead at this point to
section 3.2.3.5 We derive these expressions in the discussion below.

3.2.2.2 The Convective Term

To convert the word expressions in equation 3.67 to mathematical terms, we need to consider
how to use the continuum model to keep track of mass or momentum flow in through a
surface. We begin by considering the simplest case of direct mass and momentum flow
through a flat surface.

EXAMPLE 3.6 Liquid passes through a chosen area A as shown in Fig-
ure 3.24. The velocity is perpendicular to the surface A at every point and does
not vary across the cross-section. What are the volumetric flow rate (volume
liquid/time), mass flow rate (mass/time), and momentum flow rate (momen-
tum/time) through A?

SOLUTION Figure 3.24 shows that for the case under consideration, the
velocity of the fluid is perpendicular to the surface A and is constant (does not
vary with position). Consider the fluid that passes through A during a short time
interval Δt (Figure 3.25). The volume of fluid that passes through A during the
interval Δt forms a solid whose volume is given by

⎛
⎝ Volume of fluid

passing through A
in time Δt

⎞
⎠ =

(
height
of solid

)(
cross-section

of solid

)
(3.68)

= Δx A (3.69)

where Δx is the change in location of fluid that started at A and has moved
in the x-direction for time Δt. The magnitude of the fluid velocity, v, can be

5The two examples we are about to discuss deal with some very basic relationships of fluid mechanics
and are worth spending some time on, even if you choose to skip the subsequent derivation.
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Figure 3.24: For this example we consider the flow through a surface A. The velocity of the
fluid is perpendicular to the surface A.

written as
Magnitude of
fluid velocity

|v| = v =
Δx

Δt
(3.70)

With these two expressions we can calculate all the quantities of interest. The
volumetric flow rate is the volume of fluid divided by the time interval.

Q =
fluid volume

time interval
=

Δx A

Δt
= v A (3.71)

Volumetric flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

Q = v A (3.72)

The mass flow rate can be calculated from the volumetric flow rate and the
density.

m =
( mass

volume

)(
volume

time

)
(3.73)

= (ρ)(v A) (3.74)

Mass flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

m = (ρ)(v A) (3.75)

Finally, the momentum flow rate (a vector quantity) can be calculated from the
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Figure 3.25: During the time interval Δt, a volume of fluid of height Δx and of cross-sectional
area A passes through the area A.

definition of momentum and the previous results.(
Momentum flow

of liquid through A

)
=

(
momentum

volume

)(
volume

time

)
(3.76)

=
(mass)(velocity)

volume

(
volume

time

)
(3.77)

=
( mass

volume

)
(v)

(
volume

time

)
(3.78)

= ρ v (vA) (3.79)

Note that for this example the velocity of the fluid was perpendicular to the
surface A and v does not vary across A.

Momentum flow
of liquid through A

(velocity perpendicular to A;
v does not vary across A)

= ρ v (vA) (3.80)

The previous example shows how powerful the continuum approach is. With very
simple logic (essentially unit matching), we are able to express volume, mass, and momentum



261

flows for a chosen system in terms of two field variables, density and velocity. For more
complex systems, we build on these relationships and employ some vector tools, as we show
in the next example.

EXAMPLE 3.7 Liquid passes through a chosen area A as shown in Fig-
ure 3.26. The velocity of the fluid makes an angle θ with the unit normal to A,
which is called n̂. The velocity does not vary across the surface A. What are
the volumetric flow rate (volume liquid/time), mass flow rate (mass/time), and
momentum flow rate (momentum/time) through A?

v

A

n̂ θ

Figure 3.26: For this example we consider the flow through a surface A. The velocity of the
fluid is not perpendicular to the surface A; instead, the velocity makes an angle θ with the
surface unit normal n̂.

SOLUTION The logic of the solution is the same for this case as in the
previous example; there is, however, a difference in the volume of fluid that
passes through A in time interval Δt.

Consider the fluid that passes through A during the short time interval Δt
(Figure 3.27). The x-direction is the direction of flow. In time interval Δt fluid
that started on the surface A moved along x a distance cos θΔx. The volume of
fluid that passed through A in this time interval is the volume of the solid shown.
The volume of fluid that passes through A during the interval Δt is thus given
by

⎛
⎝ Volume of fluid

passing through A
in time Δt

⎞
⎠ =

(
height
of solid

)(
cross-section

of solid

)
(3.81)

= (Δx cos θ) A (3.82)
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Figure 3.27: During the time interval Δt, a volume of fluid of height Δx cos θ and of cross-
sectional area A passes through the area A.

The magnitude of the fluid velocity, v, can be written as before as

Magnitude of
fluid velocity

|v| = v =
Δx

Δt
(3.83)

With these two expressions we can calculate all the quantities of interest.

Volumetric flow
of liquid through A

Q =
fluid volume

time interval
(3.84)

=
Δx cos θ A

Δt
(3.85)

= v cos θ A (3.86)

= (n̂ · v)A (3.87)

Volumetric flow
of liquid through A

(general orientation case;
v does not vary across A)

Q = v cos θ A = (n̂ · v)A (3.88)

We have used the definition of the dot product to write the final result (equa-
tion 3.86) in vector notation (n̂ ·v = |n̂||v| cos θ = v cos θ; see equation 1.166). As
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before, the mass flow rate can be calculated from the volumetric flow rate and
the density.

Mass flow
of liquid through A

m =
( mass

volume

)(
volume

time

)
(3.89)

= (ρ) (v cos θ A) = ρ (n̂ · v) A (3.90)

Mass flow
of liquid through A

(general orientation case;
v does not vary across A)

m = ρ (n̂ · v) A (3.91)

Finally, the momentum flow rate can be calculated as before from the definition
of momentum and the previous results.

(
Momentum flow

of liquid through A

)
=

(
momentum

volume

)(
volume

time

)
(3.92)

=
(mass)(velocity)

volume

(
volume

time

)
(3.93)

=
( mass

volume

)
(v)

(
volume

time

)
(3.94)

= ρ v (v cos θ A) = ρ v (n̂ · v)A (3.95)

This is the general result when v is not necessarily perpendicular to A.

⎛
⎜⎜⎝

Momentum flow
of liquid through A

(general orientation case;
v does not vary across A)

⎞
⎟⎟⎠ = ρv (n̂ · v)A (3.96)

We recover the case of velocity perpendicular to A (equation 3.80) when θ = 0
(cos 0 = 1, n̂ · v = v).

The relationship we obtained in equation 3.88 for volumetric flow rate through an area
as a function of the locally constant velocity v (Q = (n̂ · v)A) is similar to an equation
introduced in Chapter 1 that relates overall volumetric flow rate through a pipe to the
average velocity in the pipe 〈v〉 (equation 1.2). If we write equation 3.88 on a microscopic
piece of cross-sectional area in a pipe flow with varying v and integrate over the pipe cross
section (recall equation 1.158) we obtain equation 1.2; this calculation is shown in Chapter 6.
In the example below, we practice a bit with the relations we have just developed.
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EXAMPLE 3.8 Consider a control volume in the shape of the square pyra-
mid as shown in Figure 3.28. The square pyramid is a pentahedron with a square
for a base and four triangles for sides; the one in Figure 3.28 has four equilateral
triangles for sides (a Johnson solid). The pyramid is a control volume placed in
a uniform flow (velocity v in the flow is constant at every position in space). The
flow direction is parallel at all points to a vector in the plane of the pyramid’s
base that bisects two opposite sides of the base. Calculate the mass flow rate of
fluid of density ρ through each of the five sides of the pentahedron. Write your
answer in terms of the speed of the fluid v and the pyramid edge-length α.

SOLUTION The use of a pentahedron as a control volume is unusual, but
the calculations involved in solving this problem are not unusual at all when
making calculations of the convective contribution to the momentum balance.
This problem provides us with an opportunity to practice with angles, geometry,
the dot product, and the relations in this section.

The mass flow through a surface is given by equation 3.91.

Mass flow of liquid
through surface A

m = ρ (n̂ · v) A (3.97)

For each of the five surfaces of the control volume we need the unit normal n̂ and
the area A. The density ρ is constant, and the velocity vector v is the same at
all locations for uniform flow.

We choose as our coordinate system a Cartesian coordinate system with the
flow direction as the z-direction.

v =

⎛
⎝ 0

0
v

⎞
⎠

xyz

= vêz (3.98)

The outwardly pointing unit normal vectors for each surface of the control volume
are shown in Figure 3.28. For the bottom of the pyramid, the outwardly pointing
unit vector a points downward, a = −êx. The dot product of a and v = vêz is
therefore zero, and the mass flow rate through the bottom is zero:

m = ρ (n̂ · v) A (3.99)

m|a = ρ(a · v)α2 (3.100)

= ρα2
(
1 0 0

)
xyz
·
⎛
⎝ 0

0
v

⎞
⎠

xyz

(3.101)

= 0 (3.102)

For surface b, the geometry in the inset of Figure 3.28 shows us that the outwardly
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Figure 3.28: The control volume is a square pyramid, which has five sides, four of which are
equilateral triangles.
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pointing unit normal vector b is

n̂|b ≡ b =

⎛
⎜⎝

1√
3

0√
2
3

⎞
⎟⎠

xyz

(3.103)

and the area of the equilateral triangle that makes up the face is A =
(1/2)(α)(α

√
3/2). The mass flow rate through surface b is therefore

m = ρ (n̂ · v) A (3.104)

m|b = ρ(b · v)α
2
√
3

4
(3.105)

=
ρα2
√
3

4

(
1√
3

0
√

2
3

)
xyz
·
⎛
⎝ 0

0
v

⎞
⎠

xyz

(3.106)

=
ρvα2

2
√
2

(3.107)

For surface c, the outwardly pointing unit normal vector c is similar to b, but the
z-component points in the opposite direction.

n̂|c ≡ c =

⎛
⎜⎝

1√
3

0

−
√

2
3

⎞
⎟⎠

xyz

(3.108)

The mass flow rate through surface c is therefore

m|c = ρ(c · v)α
2
√
3

4
(3.109)

=
ρα2
√
3

4

(
1√
3

0 −
√

2
3

)
xyz
·
⎛
⎝ 0

0
v

⎞
⎠

xyz

(3.110)

= −ρvα2

2
√
2

(3.111)

The mass flow rates out through surfaces b and c are the same but one is positive,
indicating that the flow is outwards (surface b) and one is negative, indicating
that the flow is inwards (surface c).

For surfaces d and h, the unit normal vectors are in the xy-plane, and thus
when the outwardly pointed unit normal n̂ is dotted with v = vêz in each case,
we get zero; there is no mass flow out of the control volume through either of
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these surfaces.

d̂ =

⎛
⎝ dx

dy
0

⎞
⎠

xyz

(3.112)

d̂ · v = (dxêx + dyêy) · vêz = 0 (3.113)

ĥ =

⎛
⎝ hx

hy

0

⎞
⎠

xyz

(3.114)

ĥ · v = (hxêx + hyêy) · vêz = 0 (3.115)

Finally, notice that the sum of all the mass flow rates is zero; this is in accord
with the mass balance that at steady state the net outflow of mass from the
control volume is zero.⎛

⎝ net outflow
of mass from

control volume (CV)

⎞
⎠ = m|a + m|b + m|c + m|d + m|h (3.116)

= 0 +
ρvα2

2
√
2
− ρvα2

2
√
2
+ 0 + 0 (3.117)

= 0 (3.118)

We return now to our work with equation 3.67. We seek to covert the two word-
expressions in that equation to mathematical terms. Both of the word-expressions under
consideration account for momentum flows of fluid through the surfaces that bound the
control volume. In the previous example we practiced writing momentum flows through a
surface (equation 3.96), and we now turn to applying this technique to the control volume.

Beginning with the blue fluid that enters the control volume, consider the surface
area Sin through which blue fluid enters (Figure 3.29). We have chosen a surface with an
arbitrary shape and orientation for this derivation. In a general flow, fluid velocity varies with
position, and therefore some care must be taken when calculating the momentum entering
the control volume through Sin. We must divide up the surface Sin in some way and sum
the contributions from various regions. In addition, the surface Sin is not generally flat, and
therefore the task of dividing Sin is itself a challenge. This very problem has been addressed
in the development of integral calculus (appendix C.2.1), and we can directly apply these
methods to the calculation of the flow of momentum through Sin.

Our approach is to project Sin onto a plane we arbitrarily call the xy-plane (Fig-
ure 3.30). The area of the projection is R. Since R is in the xy-plane, the unit normal to R
is êz. We divide the projection R into areas ΔA = ΔxΔy and seek to write the momentum


