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Questions About 

R ela x a tion S p ec tra  

S ubmitted by  a  

R ea der 
 

K evin Penfield of U niqema has submitted the 

following questions to the Bulletin: 

 

“I hav e a v ague sense of what relax ation spectra are, 

as a distrib ution of (M ax well?) elements ov er a 

continuum of relax ation times. C ould you prov ide me 

with a b etter definition, conceptually? What is a more 

accurate definition of the ordinate? A nd what pitfalls 

might there b e in using freq uency-sweep data 

cov ering finite freq uency range to calculate a 

relax ation spectrum (especially, might the points at 

either end do weird things)?” 

 

S O R  member Professor John D ea ly  ha s 

p rov ided the following  a nswers. 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

 

These are very important questions that deal with the 

most fundamental aspects of the practical use of 

linear-viscoelastic material functions to describe the 

behavior of polymeric materials. I  will deal with 

these under several headings in response to the issues 

raised by K evin Penfield. A more detailed discussion 

of these subjects can be found in Ref. [1]. 

 

In brief, the discrete relax ation-time spectrum is a 

convenient artifice with no physical meaning.  I t can 

be calculated easily, but should only be used in a very 

limited way to interrelate linear-viscoelastic 

functions.  The discrete spectra obtained from such 

curve-fitting are not unique. 

 

The continuous relax ation spectrum function H (τ) is 

a true representation of linear-viscoelastic material 

properties.  I t cannot be calculated easily, but in the 

last two decades good techniques have been 

developed for calculating the continuous spectrum 

function from experimental data.  The accurate 

calculation of H (τ) from experimental data requires 

choosing a data-inversion technique that properly 

accounts for the effect of experimental error.  The 

continuous spectrum function obtained from these 

methods is unique, within the set of assumptions 

made about regulariz ation parameters and about the 

distribution of errors. 

 

 

 

 

 

 

 

 

 

 

 

F inally, lack of information, especially at long 

relaxation times, compromises all calculations of 

linear-viscoelastic properties.  L ong relaxation-time 

information, such as is contained in accurate creep 

compliance data, is required to address this issue.  

Accurate techniques exist for combining G', G" and 

J(t) data in a way that allows for accurate calculation 

of the relaxation spectrum function. 

 

The D iscrete Relaxation S pectrum 

 

The material function commonly used as the basis for 

discussing linear viscoelastic behavior is the 

relaxation modulus G(t), although D on Plaz ek argues 

that the creep compliance is a better starting point [2]. 

In practice it is not possible to measure with good 

precision the relaxation modulus over the entire range 

of time from z ero to infinity, but we wish to make the 

best use of the available data to arrive at an analytic 

function providing the truest possible representation 

of G(t) within the limits imposed by the range, 

accuracy and precision of the data. 

 

I t is common practice to describe the relaxation 

moduli of polymers using a sum of exponentials, 

referred to as the generaliz ed (multi-mode) M axwell 

model. 

 it
N

i

ieGtG
τ/

1

)(
−

=

!=
 (1) 

 

The set of constant, { τi, Gi} , are said to constitute a 

discrete relax ation spectrum. W hile these empirical 

parameters have no physical significance, in the limit 

of large N, the sum should, in principle, approach the 

underlying function G(t) that is a material property. 

The discrete spectrum lends itself to the conversion of 

one response functional into another, for example 

G(t) to J(t) or G'(ω),G"(ω), and can be inferred from 

data in such a way that it describes these data with a 

precision limited only by that of the data themselves. 

 

I t is important to note that this choice of a sum of 

exponentials is arbitrary and does not have a solid 

foundation in polymer physics. I t is thus an empirical 

description; there is no unique discrete spectrum, and 
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the fitting parameters { τi, Gi}  have no physical 

significance. I t is true that there are theories of 

polymer behavior that lead to relaxation moduli of the 

form of E q 1, and this seems to imply that there is a 

basis at the molecular level for the use of a sum of 

exponentials. These theories , however, are based on 

a much simplified picture in which the molecule is 

replaced by a chain of N beads connected by N-1 

connecting springs [3, p. 157 ] . U nlike the actual 

molecule, this chain is freely-jointed, which 

dramatically reduces the mathematical complexity of 

the model. The number of springs is much less than 

the number of backbone bonds, is arbitrary within 

certain limits, and thus has no physical significance. 

F or example, the Rouse-Bueche model for an 

unentangled melt predicts that 
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The D oi-E dwards model for an entangled chain is 

also based on the freely-jointed chain picture and 

predicts the following relaxation moldulus for an 

entangled, monodisperse melt in the plateau and 

terminal z ones. 
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whereτd is the reptation or disengagement time. The 

upper limit of the summation is generally not 

indicated, because it converges very rapidly, but the 

empirical picture of the freely-jointed chain still lurks 

in the background. 

 

We conclude that there is little basis at the level of 

molecular physics for the use of a sum of 

exponentials to describe the relaxation modulus. 

Thus, the use of a discrete spectrum should be seen as 

a convenient empirical representation of experimental 

data. 

 

C ontinuous relaxation spectrum functions 

 

If the number of elements in the generaliz ed M axwell 

model is increased toward infinity, one arrives at the 

continuous spectrum function, F(τ), where F(τ)dτ is 
the contribution to G(t) due to M axwell elements 

having relaxation times between τ and τ + dτ. The 
relaxation modulus is related to the spectrum function 

as shown by E q 4. 
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H owever, because of the concentration of relaxation 

information at very short times, it is generally 

preferable to work with a logarithmic time scale. This 

leads to a relaxation spectrum function, H(τ), which 
is a time-weighted spectrum function defined as Fτ, 
so that the relaxation modulus is given by: 
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Relationships between the various material functions 

describing linear behavior and methods for 

converting among them are discussed by F erry [4] . 

The continuous functions F(!) and H(!) are not 

empirical fittings as is the discrete spectrum, as they 

are integral transforms that contain all the 

information that is in the modulus itself. 

 

The degree to which a discrete spectrum approaches 

the continuous spectrum that is a true material 

characteristic depends on the density of data points 

and the technique used to infer the set of spectrum 

parameters { τi, Gi} . O bviously, the greater the density 

of data points the better the characteriz ation, but the 

method used to infer the parameters is also of crucial 

importance. 

 

M ethods of Inferring a D iscrete S pectrum F rom 

E xperimental D ata 

 

Whether using a discrete or a continuous spectrum 

function to represent G(t), the practical problem is 

how to use experimental data to determine it. We 

must first recogniz e that it is not possible to 

determine the relaxation modulus with good precision 

and accuracy over the entire range of relevant times, 

which may run from microseconds to hours or days. 

F urthermore, the classical step strain experiment is 

not a popular method for determining G(t) because of 

the difficulties involved in generating an 

instantaneous deformation and tracking the very rapid 

initial decay of the stress following the strain. The 

experiment most often used to characteriz e linear 

behavior is small amplitude oscillatory shear.  

O scillatory shear data are usually reported as a table 

of the storage and loss moduli at a series of 

frequencies, i.e, the set                 , U sing the 

Boltz mann superposition principle, one can show that 

these are F ourier transforms of the relaxation 

modulus: 
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These transforms can, in principle, be inverted to give 

G(s), given the storage and loss moduli [4 , p.6 8 ]. 

H owever, to carry out the inversion in a precise way, 

these moduli must be known as continuous functions 

of frequency over the range of frequencies from zero 

to a value at which they have reached their high-

frequency limiting behaviors, whereas what is 

available are G' and G" values at discrete frequencies 

whose range is limited by the capabilities of the 

instrument used. 

 

The conversion of a data set                  into a 

relaxation modulus function is usually carried out by 

representing G(t) in terms of a discrete relaxation 

spectrum {Gi, τi}. This requires the inversion of the 
summations: 
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It is very important to note that the success of this 

transformation is limited by the following inevitable 

features of oscillatory shear data. 

 

1. Data are obtained only at a certain number of 

discrete frequencies. 

2. Data are available only between maximum and 

minimum frequencies that are imposed by the 

capabilities of the instruments used. This range 

of frequencies is called the “experimental 

window”. 

3 . There is always some imprecision (called scatter 

or noise) in the data. 

 

There may also be systematic error (bias) in the data, 

but there is no way of correcting for this if it cannot 

be modeled explicitly. As a result of these 

nonidealities, the inference of a discrete spectrum 

using E qs. 7a,b is an ill-posed problem. Although a 

set of parameters can be found that provides an 

approximate description of the rheological behavior 

that is suitable for some purposes, there is no unique 

discrete spectrum corresponding to a given set of 

data. 

 

There are two approaches to this problem, depending 

on one’s objectives. If one wants only an empirical 

equation that fits the data, it is a relatively simple 

matter of curve fitting. The most straightforward 

method for accomplishing this is linear regression, an 

example of which is the work of Laun [5]. Laun 

started by selecting one relaxation time parameter τi 

per decade and determined the Gi values 

corresponding to them by linear regression based on 

both G' and G" . When Laun used the resulting 

discrete spectrum to recalculate the storage and loss 

moduli, he found that spurious oscillations were 

present. It is also possible using this technique to 

arrive at a parameter set that includes one or more 

negative values of Gi, which is obviously 

nonphysical. Of course, the number N of empirical 

constants fitted should not exceed the number of data 

points available. F urthermore, in this approach, one 

ends up modeling the scatter in the data along with 

the underlying “true” values of the moduli.  

 

A more sophisticated approach to this curve fitting is 

that of Baumgaertel and Winter [6 ]. U sing nonlinear 

regression, they developed an algorithm that 

converges to a “parsimonious” spectrum, i.e ., one 

having the fewest possible M axwell modes consistent 

with the level of random error in the data. They do 

not smooth or filter the data. In other words, they are 

careful not to model the error. A commercial software 

package, IR IS [7], is based on their method. This 

technique yields the simplest possible fitting of the 

data but contains much less information than was in 

the data set and has very little if any relationship to 

the “true” relaxation spectrum. 

 

The second approach to the problem of inferring a 

spectral function from dynamic data is directed at 

establishing as accurately as possible the spectrum 

that is a material property of the material under study 

rather than simply fitting experimental data. To 

accomplish this, it is necessary to overcome the ill-

posedness of the problem by providing information in 

addition to the experimental data. A general approach 

to the problem of arriving at a spectrum that 

approximates a true material property is the use of 

regularization. H ere the additional information 

introduced is the specification that the spectrum be a 

smooth function of time and an estimate of the error 

in the data. H onerkamp and Weese [8 ] accomplished 

this by assuming that the spectrum and its first and 

second derivatives are continuous and that the second 

derivative is small. To avoid modeling the noise 

(random error) in the data, they employ Tikhonov 

regularization. Provencher [9] has described an 

algorithm for treating data using this technique, and a 

commercial version of this code, C ON TIN , is 

available [10]. Tikhonov regularization requires the 

selection of a value for the regularization parameter, 

and H onerkamp and Weese [11] have proposed a 

reliable method for doing this. They use 

regularization with linear regression to arrive at a 

spectrum that converges to a unique material function 

as the number of terms in the discrete spectrum, N, 
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