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Chapter 8:  Memory Effects: GLVE
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Michigan Tech

 f

Dtotal

initial state
no force

final state
force,  f,  resists

displacement

Maxwell’s model combines viscous and elastic 
responses in series

dashpotspringtotal DDD 

Displacements are 
additive:

Spring (elastic) and 
dashpot (viscous) in series:

Fluids with Memory - Chapter 8
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We seek a constitutive equation that includes memory effects.

calculates the 
stress at a 
particular time, t

2 equations so far:
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So far, stress at t depends on 
rate-of-deformation at t only
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Neither can predict:

•Shear normal stresses - this will be wrong so long as we use 
constitutive equations proportional to

•stress transients in shear (startup, cessation) - this flaw seems 
to be related to omitting fluid memory

Current Constitutive Equations



We will try to fix this now; we will address the first point 
when we discuss advanced constitutive equations
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Startup of Steady Shearing

© Faith A. Morrison, Michigan Tech U.

Figures 6.49, 6.50, p. 208 Menezes 
and Graessley, PB soln
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Cessation of Steady Shearing

© Faith A. Morrison, Michigan Tech U.

Figures 6.51, 6.52, p. 209 Menezes and 
Graessley, PB soln
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How can we incorporate time-dependent effects?

First we explore a simple memory fluid.

© Faith A. Morrison, Michigan Tech U.

)()~8.0()(~)( 0tttt   

Let’s construct a new constitutive equation that remembers the stress 
at a time t0 seconds ago

Newtonian 
contribution

contribution 
from fluid 
memory

~ is a constant parameter of the model

This is the 
rate-of-
deformation 
tensor t0

seconds before
time t
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What does this model predict?

Steady shear
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Steady Shear Flow Material Functions
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Start-up of Steady Shear Flow Material Functions
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Shear stress 
growth 
function

First normal-stress 
growth function

Second normal-
stress growth 

function
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Cessation of Steady Shear Flow Material Functions
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Shear stress 
decay function
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decay function

Second normal-
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function
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Predictions of the simple memory fluid
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Steady shear

0

~8.1

21 
  The steady viscosity reflects 

contributions from what is currently 
happening and contributions from 
what happened t0 seconds ago.

Shear start-up
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Predictions of the simple memory fluid
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Shear start-up
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Figures 6.49, 6.50, p. 208 Menezes 
and Graessley, PB soln
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Predictions of the simple memory fluid
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Shear start-up

~ ~8.1
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What the data show:

What the GNF models predict:

0 t

)(21 t

increasing 

increasing 

What the simple memory fluid 
model predict:

t0
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Predictions of the simple memory fluid

© Faith A. Morrison, Michigan Tech U.

Shear start-up

~ ~8.1

)(t

t

0 t

)(21 t

What the data show:

What the GNF models predict:

0 t

)(21 t

increasing 

increasing 

What the simple memory fluid 
model predict:

t0

Adding that 
contribution from the 

past introduces the 
observed “build-up” 

effect to the predicted  
start-up material 

functions.
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)2()~6.0()()~8.0()(~)( 00 tttttt   

We can make the stress rise smoother by adding more 
fading memory terms.
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Newtonian 
contribution

contribution 
from t0

seconds ago

contribution 
from 2t0

seconds ago

~ ~8.1

)(t

tt0 2t0

~4.2

The memory 
is fading
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The fit can be made to be perfectly smooth by using a sum of 
exponentially decaying terms as the weighting functions.

0 1.00

1 0.37

2 0.14

3 0.05

4 0.02

/0pte


0pt

(t0/ scales the decay)
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This sum can be rewritten as an integral.
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New model:

~ ~8.1

)(t

tt0 2t0

~4.2

(Actually, it takes a bit of 
renormalizing to make this 
transformation actually work.)

In the current 
formulation, 
+ grows as 
N goes to 
infinity.
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Maxwell Model 
(integral 
version)

Relaxation time  - quantifies how fast 
memory fades

Zero-shear viscosity 0 – gives the value 
of the steady shear viscosity

Two parameters:
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With proper reformulation, we obtain:

Steps to here:
•Add information about past deformations
•Make memory fade
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We’ve seen that including terms that invoke past deformations (fluid 
memory) can improve the constitutive predictions we make.

This same class of models can be derived in differential form, beginning 
with the idea of combining viscous and elastic effects.

58

Hooke’s Law for elastic solids 2121  G
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Newton’s Law for viscous liquids 2121  

The Maxwell Models

The basic Maxwell model is based on the 
observation that at long times viscoelastic 

materials behave like Newtonian liquids, while at 
short times they behave like elastic solids.
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Maxwell’s model combines viscous and elastic 
responses in series

dashpotspringtotal DDD 

Displacements are 
additive:

Spring (elastic) and 
dashpot (viscous) in series:
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In the spring:
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The Maxwell Model
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How does the Maxwell model behave at 
steady state?  For short time deformations?

210
210
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Example:  Solve the Maxwell Model for an expression 
explicit in the stress tensor
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0)()(  xbxay
dx

dy

First-order, linear differential equations:

Integrating function, u(x)

  xdxaexu )()(
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Maxwell Model 
(integral 
version)
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We arrived at this equation following two different paths:

•Add up fading contributions of past deformations
•Add viscous and elastic effects in series
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What are the predictions of the Maxwell model?

Need to check the predictions to see if 
what we have done is worth keeping.

Predictions:

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear

68
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What are the predictions of the Maxwell model?

Need to check the predictions to see if 
what we have done is worth keeping.

Predictions:

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear
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Steady Shear Flow Material Functions
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Predictions of the (single-mode) Maxwell Model

© Faith A. Morrison, Michigan Tech U.

Steady shear

021
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 Fails to predict shear normal 

stresses.

Fails to predict shear-thinning.
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Steady shear viscosity and first 
normal stress coefficient
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There are some 
systems with a 
constant 
viscosity but 
still start-up 
effects.

BOGER FLUIDS
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BOGER FLUIDS
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Step Shear Strain Material Functions
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Predictions of the (single-mode) Maxwell Model
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Does predict a gradual 
build-up of stresses on 
start-up.
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 Does predict a reasonable 

relaxation function in step 
strain (but no normal 
stresses again).
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Step-Shear-Strain Material Function G(t) for Maxwell Model
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Comparison to experimental data

Figure 8.4, p. 274 data from Einaga et al., PS 
20% soln in chlorinated diphenyl
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We can improve this fit by adjusting the Maxwell 
model to allow multiple relaxation modes
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Step Shear Strain Material Functions

0

0

constant

0

0

0

0

lim)(




























t

t

t

t

Kinematics:

123

2

0

0

)(


















xt

v



Material Functions:

0

021
0

),(
),(


 t

tG




 
2
0

2211
1 

 
G

 
2
0

3322
2 

 
GRelaxation 

modulus

First normal-stress 
relaxation modulus

Second normal-
stress relaxation 

modulus

© Faith A. Morrison, Michigan Tech U.

80

Predictions of the Generalized Maxwell Model
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Steady shear
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This function can fit any
observed data; note that the 
GMM does not predict shear 
normal stresses.
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Fitting G(t) to Generalized Maxwell Model

Figure 8.4, p. 274 data 
from Einaga et al., PS 
20% soln in chlorinated 
diphenyl

(s) (Pa)
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The Linear-Viscoelastic Models
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The Linear-Viscoelastic Models
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  Generalized Maxwell 

model (N modes):

Since the term in brackets is just the predicted relaxation modulus 
G(t), we can write an even more general linear viscoelastic model
by leaving this function unspecified.
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The Linear-Viscoelastic Models
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Small-Amplitude Oscillatory Shear Material Functions
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Predictions of the Generalized Maxwell Model (GMM) 
and Generalized Linear-Viscoelastic Model (GLVE)

© Faith A. Morrison, Michigan Tech U.

Small-amplitude 
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Predictions of (single-mode) Maxwell Model in SAOS
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Predictions of (multi-mode) Maxwell Model in SAOS

Figure 8.8, p. 284 
data from 
Vinogradov, PS melt

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

aT, rad/s

G' (Pa)

G'' (Pa)

k k (s)     
gk(kPa)
 1   2.3E-3      16
 2   3.0E-4    140
 3   3.0E-5      90
 4   3.0E-6    400
 5   3.0E-7  4000















N

k k

k

N

k k

kk

G

G

1
2

1
2

2

)(1
)(

)(1
)(







k  k(s)      gk(kPa)

89



Generalized LVE CM4650 2014

26

© Faith A. Morrison, Michigan Tech U.

Predictions of (multi-mode) Maxwell Model in SAOS

Figure 8.10, p. 286 
data from Laun, PE 
melt
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Limitations of the GLVE Models

•Predicts constant shear viscosity

•Only valid in regime where strain is additive (small-strain, 
low rates)

•All stresses are proportional to the deformation-rate tensor; 
thus shear normal stresses cannot be predicted

•Cannot describe flows with a superposed rigid rotation (as we 
will now discuss; see Morrison p296)
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BOGER FLUIDS
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W V
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EXAMPLE:  Drag flow of a Generalized 
Linear-Viscoelastic fluid between infinite 
parallel plates
•steady state
•incompressible fluid
•infinitely wide, long
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Shear flow in a rotating frame of reference
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Shear flow in a rotating frame of reference
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Summary: Generalized Linear-Viscoelastic 
Constitutive Equations

•A first constitutive equation with memory

•Can match SAOS, step-strain data very well

•Captures start-up/cessation effects

•Simple to calculate with

•Can be used to calculate the LVE spectrum

•Fails to predict shear normal stresses

•Fails to predict shear-thinning/thickening

•Only valid at small strains, small rates

•Not frame-invariant

PRO:

CON:
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