

Path to strain for shear:

$$\underline{r}(t_{ref}), \underline{r}(t) \rightarrow \underline{u} \rightarrow \overline{\nabla u} \rightarrow \underline{r}(t_{ref}, t)$$
Try to follow for elongation.

$$r(t_{ref}) = \begin{pmatrix} x_1(t_{ref}) \\ x_2(t_{ref}) \\ x_3(t_{ref}) \end{pmatrix}_{123} \underline{r}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}_{123} = ?$$

$$\underline{u}(t_{ref}, t) = \underline{r}(t) - \underline{r}(t_{ref}) = ?$$

$$\underline{\gamma} = \nabla \underline{u} + (\nabla \underline{u})^T = ?$$

$$(a + b) = b + (b) = b$$

Shear	Elongation	
$v_1 = \dot{\gamma}_0 x_2$	$v_3 = \dot{\varepsilon}_0 x_3$	$\frac{\partial v}{\partial r} = constant$
$\frac{dx_1}{dt} = \dot{\gamma}_0 x_2$	$\frac{dx_3}{dt} = \dot{\varepsilon}_0 x_3$	CX.
$dx_1 = \dot{\gamma}_0 x_2 dt$ $x_1 = x_{1,0} + \dot{\gamma}_0 \Delta t \ x_2$	$\frac{dx_3}{x_3} = \dot{\varepsilon}_0 dt$	
$\frac{\partial(x_1 - x_{1,0})}{\partial x_2} = \dot{\gamma}_0 \Delta t$	$\ln \frac{x_3}{x_{3,0}} = \dot{\varepsilon}_0 \Delta t$	Piece of deformation over time interval Δt
Notes:		
•The way we quantified deformation for elongation.	on for shear, du_1/dx_2 , is no	t so appropriate
•Velocity gradient constant in both	flows (but not the same g	radient)
•(Velocity gradient) (Δt) is a measu with flow	re of deformation that acc	cumulates linearly
	© Faith A.	Morrison, Michigan Tec

