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To proceed to better-designed constitutive equations, 
we need to know more about material behavior, i.e. 
we need more material functions to predict, and we 

need measurements of these material functions.

•More non-steady material functions (material 
functions that tell us about memory)

•Material functions that tell us about nonlinearity 
(strain)
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The next three families of material functions 
incorporate the concept of strain.
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Creep Shear Flow Material Functions
Kinematics:

Material Functions:

It is unusual to prescribe stress rather than 

Since we set the stress in this experiment (rather than 
measuring it), the material functions are related to the 

deformation of the sample.  We need to discuss 

measurements of deformation before proceeding.

Because shear rate is not 
prescribed, it becomes 

something we must measure.
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Pause on Material Functions

We need to define and learn to 
work with strain.

Deformation (strain)

© Faith A. Morrison, Michigan Tech U.

We need a way to quantify 
“change in shape”

t

The problem of change in shape is a 
difficult, 3-dimensional problem; we 
can start simple with unidirectional 
flow (shear).
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Strain in Shear

The strain is related to the change of 
shape of the deformed particle.

© Faith A. Morrison, Michigan Tech U.
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Strain in Shear

The strain is related to the change of 
shape of the deformed particle.

There is no unique way to measure 
“change of shape.”
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This vector keeps track of 
the location of a fluid particle 
as a function of time.

Current position 
compared to 
reference position
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Relative change in 
displacement

What is the strain in the standard flow steady shear?
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We can integrate this differential 
equation because is a 

constant.  We obtain .
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Deformation  in shear flow (strain)
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steady

Deformation  in shear flow (strain)
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(for steady shear or in 
unsteady shear for short 

time intervals)

Our choice for measuring change in shape:

steady
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For unsteady shear, is a function of time:

short time interval between 
and :
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This integration is less 

straightforward.

We can obtain the unsteady result for strain by applying the steady 
result over short time intervals (where may be approximated as a 
constant) and add up the strains.

For unsteady shear:

(short time interval)

For a long time interval, we add up the strains over short time intervals.
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Strain at t2 with 
respect to fluid 
configuration at t1 in 
unsteady shear flow.
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short time interval:

long time interval:
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For shear flow (steady or unsteady):
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t
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Strain at t2 with 
respect to fluid 
configuration at t1 in 
shear flow (steady 
or unsteady).
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Now we can continue with material 
functions based on strain.

Change of Shape
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Note also, by Leibnitz rule:
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Creep Shear Flow Material Functions
Kinematics:

Material Functions:

It is unusual to prescribe stress rather than 

Since we set the stress in this experiment (rather than 
measuring it), the material functions are related to the 

deformation of the sample..

Because shear rate is not 
prescribed, it becomes 

something we must measure.

© Faith A. Morrison, Michigan Tech U.

18



IntroToMatFunctions2.pdf  2014 CM4650

10















2

2021 0

0

0

0

)(

tt

tt

t

t 

123

221

0

0

)(


















xt

v



Creep Shear Flow Material Functions
Kinematics:

Material Functions:
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̃ 0, 0,

Creep Recovery

-After creep, stop pulling forward and allow the flow to reverse

-In linear-viscoelastic materials, we can calculate the recovery 
material function from creep measurements
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Material functions predicted for creep of a 
Newtonian fluid

© Faith A. Morrison, Michigan Tech U.
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Shear Creep of a 
Viscoelastic liquid

© Faith A. Morrison, Michigan Tech U.

Figure 6.53, p. 210 
Plazek; PS melt
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corrected for 
vertical shift.
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•At long times the creep compliance J(t,0) becomes a straight 
line (steady flow).

The slope at steady state is the 
inverse of the steady state viscosity
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Characteristics of a Creep Curve

•We can define a steady-state compliance
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Shear creep material functions
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constant slope =

 osJ 

Steady-state 
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regime of steady flow at shear rate
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Characteristics of a Creep Recovery Curve

•At long recoil times we can define an ultimate recoil function
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In the Linear Viscoelastic (LVE) Limit, it is easy to 
relate the two shear creep material functions 
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For LVE materials, 
we can obtain R(t) 
without a recovery

experiment



IntroToMatFunctions2.pdf  2014 CM4650

15

© Faith A. Morrison, Michigan Tech U.

Figures 6.54, 6.55, p. 211 
Plazek; PS melt
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Step Shear Strain Material Functions
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What is the strain in this flow?
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Linear viscoelastic limit
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At small strains the 
relaxation modulus is 
independent of strain.
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The damping function 

summarizes the non-linear 
effects as a function of 
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The polystyrene solutions on the previous slide show time-strain 
independence, i.e. the curves have the same shape at different strains.



IntroToMatFunctions2.pdf  2014 CM4650

18

2

1
21 x

u
G





1u
 21 xv

2x

initial state,
no flow,
no forces

deformed  state,

Hooke's law for
elastic solids

spring restoring force

11 xkf 

initial state,
no force
initial state,
no force

deformed  state,

Hooke's law for
linear springs

f

1x
1x

Hooke’s Law for elastic solids

Similar to the linear spring law
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Small-Amplitude Oscillatory Shear Material Functions
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What is the strain in this flow?
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In SAOS the strain amplitude is small, and a 
sinusoidal imposed strain induces a 

sinusoidal measured stress.
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SAOS Material Functions
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For Newtonian fluids, stress is proportional to strain rate: 2121  

G” is thus known as the viscous loss modulus.  It characterizes the 
viscous contribution to the stress response.
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SAOS Material Functions
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For Hookean solids, stress is proportional to strain : 2121  G

G’ is thus known as the elastic storage modulus.  It characterizes the 
elastic contribution to the stress response.

(note:  SAOS material functions may also be expressed in 
complex notation.  See pp. 156-159 of Morrison, 2001)
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SAOS Moduli of a Polymer Melt 

Figure 8.8, p. 284 data 
from Vinogradov, PS melt
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aT, rad/s

G' (Pa)
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k k (s)     
gk(kPa)
 1   2.3E-3      16
 2   3.0E-4    140
 3   3.0E-5      90
 4   3.0E-6    400
 5   3.0E-7  4000

Storage Modulus, 
G’(), elastic 

character

Loss Modulus, 
G”(); viscous 

character

The SAOS moduli as a 
function of frequency 

may be correlated with 
material composition and 

used like a mechanical 
spectroscopy.

We have discussed 
six shear material 

functions;

Now, the equivalent 
elongational material 

functions
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Steady Elongational Flow Material Functions
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Kinematics:

Material Functions:
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What is the strain in this flow?

© Faith A. Morrison, Michigan Tech U.

(to answer, review how strain was 
developed/defined for previous flows. . . )
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Shear strain
(for steady shear or in 

unsteady shear for short 
time intervals)

Our choice for measuring change in shape:

Recall, for shear . .. 

How did we do that before . . ?
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Path to strain for shear:

Try to follow for elongation.
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Piece of 
deformation over 
time interval Δ

•The way we quantified deformation for shear, du1/dx2, is not so appropriate 
for elongation.

•Velocity gradient constant in both flows (but not the same gradient)

Notes:

•(Velocity gradient) (t) is a measure of deformation that accumulates linearly 
with flow
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Press on:
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strain =  dtvelocity 
gradient
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)(),( 21  

homogeneous flows 
(velocity gradient the same 

everywhere in the flow)

Need a better definition of 
strain  for the general case

Note:

Shear:

Elongation:
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The strain imposed is 
proportional to time.

The ratio of current 
length to initial length is 

exponential in time.

Hencky strain
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(choose tref=0)
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What does the Newtonian Fluid model predict in 
uniaxial steady elongational flow?

  Tvv   

Again, since we know v, we can just 
plug it in to the constitutive equation 

and calculate the stresses.
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Steady State 
Elongation 
Viscosity

© Faith A. Morrison, Michigan Tech U.

Figure 6.60, p. 215 
Munstedt.; PS melt

Both tension 
thinning and 

thickening are 
observed.

0


TrTrouton ratio:
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What does the model we guessed at predict 
for steady uniaxial elongational flow?
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What if we make the following 
replacement?

2

1
0 x

v






This at least can be written 
for any flow and it is equal 

to the shear rate in shear 
flow.
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Observations  
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•The model contains parameters that are specific to 
shear flow – makes it impossible to adapt for 

elongational or mixed flows

•Also, the model should only contain quantities that are 
independent of coordinate system (i.e. invariant)

We will try to salvage the model by replacing 
the flow-specific kinetic parameter with 

something that is frame-invariant and not 
flow-specific.
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We will take out the shear rate and replace 
with the magnitude of the rate-of-deformation 

tensor (which is related to the second invariant 
of that tensor).
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Elongational stress growth

Elongational stress cessation (nearly impossible)

Elongational creep

Step elongational strain

Small-amplitude Oscillatory Elongation (SAOE)

The other elongational experiments are 
analogous to shear experiments (see text)

© Faith A. Morrison, Michigan Tech U.
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Figure 6.63, p. 217 
Inkson et al.; LDPE

Figure 6.64, p. 218 
Kurzbeck et al.; PPStart-up of 

Steady 
Elongation

Strain-
hardening

Fit to an advanced 
constitutive equation (12 
mode pom-pom model)
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What’s next?

© Faith A. Morrison, Michigan Tech U.
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Underlying physics (mass, momentum balances, stress tensor)

Standard flows

Material functions

? 

•Constitutive equations

•Model flows/solve engineering problems

We want to design 
constitutive equations 
based on the material 
behavior of real non-

Newtonian fluids.

What is the behavior of 
non-Newtonian fluids?


