CM4650 Newtonian Fluid Mechanics

Chapter 3: Newtonian Fluid Mechanics

TWO GOALS

«Derive governing equations (mass and momentum balances

*Solve governing equations for velocity and stress fields

|

QUICK START

X3

First, before we get deep into
derivation, let’s do a Navier-Stokes

|

vi(x) H

nd
/W \=> V
—
—
T
|

problem to get you started in the L x

mechanics of this type of problem

solving.

X !
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EXAMPLE: Drag flow

C . v
between infinite vl
parallel plates v=1"
_ V3/ 123
*Newtonian
steady state
sincompressible fluid —-—)
every wide, long /
suniform pressure W m— \/
/
)
X2 I
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CM4650 Newtonian Fluid Mechanics

Chapter 3: Newtonian Fluid Mechanics

TWO GOALS

[Derive governing equations (mass and momentum balanceﬂ

«Solve governing equations for velocity and stress fields

Mass Balance

Consider an arbitrary control
volume V enclosed by a surface S

rate of increase _(net flux of
of mass inCV ) | mass into CV
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Mathematics Review Polymer Rheology
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Chapter 3: Newtonian Fluid Mechanics Polymer Rheology
Mass Balance _(continued) Consider an
arbitrary
volume V
enclosed by a
(rate of mcreasej surface S
of mass in V
outwardly
net flux of pointing unit
normal
mass into V j n-v
through surface S s
7
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Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Mass Balance (continued)

m TV =] ilovos — o
—mv.<py>dv7
0T (24540 v -0
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Chapter 3: Newtonian Fluid Mechanics

Mass Balance (continued)

Polymer Rheology

Since V is -QJ‘ (Z—f+V-(p\_/)j dv =0

arbitrary, ~_/

Continuity equation:
microscopic mass balance

%—f+V-(p\_/)=0

© Faith A. Morrison, Michigan Tech U.
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Chapter 3: Newtonian Fluid Mechanics

Mass Balance (continued)

Polymer Rheology

Continuity equation (general fluids)

L1y (py)=0
op

ot

Dp )

PV y)=0

Z+ p(V-v)+v-Vp =

0

For p=constant (incompressible fluids):

V.v=20
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Chapter 3: Newtonian Fluid Mechanics

Momentum Balance

Polymer Rheology

Consider an

Momentum is conserved.

rate of increase
of momentum in CV

(net flux of

o

resembles the
rate term in the
mass balance

LB

resembles the
flux term in the
mass balance

arbitrary
control volume
V enclosed by
a surface S

N sum of
momentum into CV forces on CV

o

Forces:
body (gravity)
molecular forces
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Momentum Balance

Polymer Rheology
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Momentum Balance (continued)

Polymer Rheology

(rate of increase

d
=— dv
of momentum in Vj dt Uﬂ oY jB Leibnitz

rule

= J[[ < pv)av

net flux of j I .
) =-—|| n: (P\_/Y)ds Gauss
(momentum into V -L 7 Divergence

_ _J‘J‘J' V. (,0\_/\_/) dv Theorem
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Momentum Balance (continued)

Forceson V

Polymer Rheology

Body Forces (non-contact)

forceon V
dueto 9

j#{ pg dv
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Chapter 3: Newtonian Fluid Mechanics

Polymer Rheology

Molecular Forces (contact) — this is the tough one

choose a surface
through P

/
the
force on
that
surface

We need an expression for the
state of stress at an arbitrary
point P in a flow.
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Molecular Forces (continued)

Think back to the molecular
picture from chemistry:

The specifics of these forces,
connections, and interactions
must be captured by the
molecular forces term that we
seek.

1
I
I
(]
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Molecular Forces (continued)

*We will concentrate on expressing the molecular
forces mathematically;

*We leave to later the task of relating the resulting
mathematical expression to experimental observations.

First, choose a

surface: N

earbitrary shape

esmall X f
stress
atP 1ds=f What s 2
on dS

87
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Consider the forces on
three mutually

perpendicular surfaces
through point P:

88
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Molecular Forces (continued)

a isstressona“l1” surface at P

H_J
a surface with
unit normal €
b isstressona “2” surface at P
c isstressona “3” surface at P

We can write these vectors in a _
Cartesian coordinate system: a=a +a, + afs
=111,6 + 11,56, + 11,48

stresson a “1”
surface in the 1-

direction
89
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Molecular Forces (continued)

a=ag+ak +af

= Hllé.l. + le% + ng% i is Szress ona :i: Sur:ace a: E
b = + é + D IS stress on a surface a
- blél b2 : Q% c isstressona “3” surface at P

=116 + 11,6, + 11,36,
C=CE +CE +CE;

= 1158 + 15,6, + 11326,

So far, this is
nomenclature; next we
relate these
expressions to force
on an arbitrary
surface.

pk

Stress on a “p”
surface in the
k-direction
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Molecular Forces (continued)

>

How can we write f (the force
on an arbitrary surface dS) in f
terms of the IT,?

f=16+16+1f
f; is force on dS in

f, is force on dS in 3-direction
1-direction f, is force on dS in
2-direction

There are three IT,, that relate to
forces in the 1-direction:
1_[11’ 1_[21’ 1_131

91
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n
Molecular Forces (continued) f

How can we write f (the force on an f=f
: =fg+ 16+ f
arbitrary surface dS) in terms of the — 1él 272 363

quantities ITy,?

f, , the force on dS in 1-direction, can be broken into
three parts associated with the three stress components:

s I, Ty, I3
n-ds
r_/%
projection of

first part:{ (I, (iA ont(f) the = TII,n-&dS

—surface

(forcej . (area)
area

K 92
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Molecular Forces (continued)

f, , the force on dS in 1-direction, is composed of THREE parts:

[ projection of
firstpart: < (I1,;] dAontothe | = II,;n-§dS
L 1-surface
- - -
projection of
second part: < ([1,;] dAontothe | = II,N-& dS
‘) 2 —surface
/_\\ . -
projection of
stress on a
2-surface  third part: < (H31) dA onto the = IlyN-6dS
G s 2 3—surface
direction -
the sum of these three = f;
93
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X2

!1 A
)
d{j; P
A, = (- 6)AA | 7] i f
=| '!- n1131
‘\J‘ [—
',d --------- g
- = A~
:fz[k\ # nzlel ”J
X3 AA, = (- &,)AA
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Molecular Forces (continued)

f, , the force in the 1-direction on an arbitrary surface dS is
composed of THREE parts.

;Y_/

stress appropriate
area

Using the distributive law:

fi=n- (Hllél +11,8 + H3163) ds

Force in the 1-direction on an
arbitrary surface dS
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Molecular Forces (continued)

The same logic applies in the 2-direction and the 3-direction

fi=n- (Hllél +116, + H3193) dS
f,=n- (leél + 118+ Hsz%) dS
f=n- (H13él +1156, + H33€3) dS

Assembling the force vector:

f=16+16+ 16
=dsSn- (Hllél +118 + H31%) &
+dSnA- (leél +11,,6, + ngés) &
+dSnA- (ngél +11,56, + HSS%) &

96
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Molecular Forces (continued)

Assembling the force vector:

f=1g+16+ 18

=dsSn. (Hllél +11,6, + H31é3) &
+dS N+ (T8 + 11,6, + T156,) 6
+dS A ([T, + T8, + TTe6s) 6

=dS N-[I1,66 + 11,66 + 1,86
+ 11,66, + 11,68, + [13.,6:6,

+ 1186 + 1,6 + Hss%@e]
“w o
v

linear combination of

dyadic products = tensor 97
© Faith A. Morrison, Michigan Tech U.

Molecular Forces (continued)

Assembling the force vector:

£ =dS N-[[1,,66 + 1,66 + 1,68
+ 11,66, + 11,66, + 115,66,

+ 1168 + 11,68, + Hssés%]
—ds A3 ST, 68,

p=lm=1
=dS N-T1,,8,6,

f=dsnOi)

Total stress tensor
(molecular stresses)
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(rate of increase

i %(py)dv _

Momentum Balance (continued)

Polymer Rheology

] (net flux of j (sum of ]
= +
of momentum in V momentum into V forces on V

molecular
{1V (m)av + ] pg av "

molecular We use a stress sign
molecular convention that
forces _[ forces on requires a negative
s ds sign here.

e dS\; e
=[[f vt ]
\

Theorem

99
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[rate of increase

Momentum Balance (continued)

Polymer Rheology

j (net flux of j [sum of j
= +
of momentum in V momentum into V forces on V

”J (,ov )dV _—mv (,ow dV+“I pg dV + molecular

forces

molecular
force

UR/Bird choice:
positive
forces on compression
(pressure is
positive)

molecular

Divergence
Theorem

— 2) ds \> Gauss

-1)dv]

Il
—
<t
!—‘
<] .
/.\
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CM4650 Newtonian Fluid Mechanics

Momentum Balance (continued)

F j [ A-(-m)ds =

surface

IT

yX

UR/Bird
choice: fluid at
lesser y exerts
force on fluid at
greatery

Polymer Rheology

[J f-@)es

~

IT

X

(IFM/Mechanics

choice: (opposite)

101

© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued)

Final Assembly:

rate of increase net flux of
of momentum inV

Because V is arbitrary, we may conclude:

Polymer Rheology

B L [sum of
~ | momentum into V forces on V

1T £tV =JI[¥-(on)av + [ pg av-[[] v-nav

HIF’)‘ V-(pw)-pg +V~g} dv =0

ot

Microscopic

opV
p‘+V (p\_/\_/)—pg +V'£=O momentum

balance
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Momentum Balance (continued) Polymer Rheology
Microscopic
opVv
momenum |02 | 7. (pyv)— pg +V-I1=0
balance ot - = =

After some rearrangement:

p(—gfw-wj:—vgwg voton
Dv
—==_V.I+

Now, what to do with l; ?

103
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Momentum Balance (continued) Polymer Rheology

Now, what to do with [ 1 2 Pressure is part of it.

Pressure

definition: An isotropic force/area of molecular origin. Pressure is
the same on any surface drawn through a point and acts normally to
the chosen surface.

pressure=pl=pe&+pee+p &=

o O ©T
o T O
T O O

Test: what is the force on a
surface with unit normal N ?

104
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Momentum Balance (continued)

back to our question,
Now, what to do with I T 2

Extra Molecular Stresses

Extra stress

Pressure is part of it.
There are other, nonisotropic stresses

Now, what to do with T2

definition: The extra stresses are the
molecular stresses that are not isotropic

This becomes the central
question of rheological study 105

tensor, i.e. everything complicated in
molecular deformation

Polymer Rheology

© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued)

Stress sign
convention affects
any expressions
with ILII or 7,7

1=

=

(5]

1=

Polymer Rheology

UR/Bird
choice: fluid at
lesser y exerts
force on fluid at
greatery

(IEM/Mechanics

choice: (opposite)

106
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Momentum Balance (continued) Polymer Rheology

Constitutive equations for Stress

= f(VWy,

eare tensor equations

erelate the velocity field to the stresses material properties)
generated by molecular forces

eare based on observations (empirical) or are
based on molecular models (theoretical)

«are typically found by trial-and-error

eare justified by how well they work for a
system of interest

eare observed to be symmetric

Observation: the stress
tensor is symmetric
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Momentum Balance (continued) Polymer Rheology

Mn;f)ﬁz%(:ﬁrﬁ aY_I_V wl=—V.IT+ Equation of
balance P ot — ) 1+ pg| motion

In terms of the extra stress tensor:

V .
P(%*‘\_/'V\_/j =—Vp—V-£+pg Equation of

Motion

Cauchy
Momentum
Equation

Components in three coordinate systems (our sign convention):
http://imww.chem.mtu.edu/~fmorriso/cm310/Navier2007.pdf

108
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Momentum Balance (continued) Polymer Rheology

Newtonian Constitutive equation

r=—ulvv+(W)')

«for incompressible fluids (see text for
compressible fluids)

*is empirical

emay be justified for some systems with
molecular modeling calculations

Note: 7 = +,u(V\_/ +(Vv) ) 109
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Momentum Balance (continued) Polymer Rheology

How is the Newtonian
Constitutive equation related to
Newton’s Law of Viscosity?

ov,

T Ty =—H—_—

r=—ulvy+ (V) ) 2T,
eincompressible fluids sincompressible fluids

erectilinear flow (straight lines)
*no variation in x;-direction

110
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Momentum Balance (continued)

Back to the momentum balance . . .

oV j
CivW|=—Vp-V.
p(@t = vE P

We can incorporate the Newtonian
constitutive equation into the momentum
balance to obtain a momentum-balance
equation that is specific to incompressible,
Newtonian fluids

Polymer Rheology

Equation of
Z+P9  Motion

L r=—ulvv+ (W) )

111
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Momentum Balance (continued)

Navier-Stokes Equation

Polymer Rheology

p(%ﬂ_/w) =—Vp+uV’v+pg

convention.

eincompressible fluids
*Newtonian fluids

Note: The Navier-Stokes is
unaffected by the stress sign

112
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Momentum Balance  (continued) Polymer Rheology

Next?

Navier-Stokes Equation

p(%w-w) =—Vp+uViv+pg

Newtonian
Problem
Solving

113
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EXAMPLE: Drag flow from QUICK START

between infinite 1Z1
parallel plates v = (Vz)
*Newtonian 123
steady state

sincompressible fluid / —-—)

svery wide, long
euniform pressure W

114
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EXAMPLE: Poiseuille
flow between infinite
parallel plates

*Newtonian

ssteady state
eIncompressible fluid
sinfinitely wide, long

EXAMPLE: Poiseuille
flow in a tube

*Newtonian

«Steady state A
sincompressible fluid
elong tube

fluid

cross-section A:

116
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EXAMPLE: Torsional
flow between parallel
plates

*Newtonian
«Steady state
sincompressible fluid

vy = zf(7)

C_‘DQ

cross-sectional
view:

117
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