

Types of Shear Rheometry	
Mechanical:	
•Mechanically produce linear drag flow; Measure (shear strain transducer): Shear stress on a surface	1. planar Couette
•Mechanically produce torsional drag flow; Measure: (strain-gauge; force rebalance) Torque to rotate surfaces Back out material functions	 cone and plate; parallel plate; circular Couette
Produce pressure-driven flow through conduit Measure: Pressure drop/flow rate	 capillary flow slit flow
Back out material functions	
	9
	© Faith A. Morrison, Michigan Tecl

	4 D							$\eta = \frac{\tau_{I}}{\dot{t}}$
γ_a	ΔP_{ent}	ΔP_{ent}	$ au_R$				γ_R	γ_{I}
gammdotA	deltPent	deltPent	sh stress	In(sh st)	In(gda)	WR	gam-dotR	viscosity
(1/s)	162 52	1 1275E 106	Pa 1 12755 - 05	11 62290290	5 521460019	2 0677	1/S	2 5507E 1
200	103.55	7 4270E+05	7 9220E+03	11 2700002	1 787401742	2.0677	152 021	5 2108E+
120 QA	85 311	5 8820E+05	6 9540E+04	11 14966143	4.707491743	2.0077	114 02325	6.0988F+
50 60	66 018	4 5518E+05	5 6437E+04	10 9408774	4 094344562	2.0077	76 0155	7 4244F+
40	36.81	2.5380E+05	4.6546E+04	10.74820375	3.688879454	2.0677	50.677	9.1849E+
			No	ow, plot v	/iscosity shear-ra	versus	s wall-	

