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Abstract

This review is concerned with the nonequilibrium dynamics and structure of complex &uids based on
simple micro- and mesoscopic physical models which are not rigorously solvable by analytic methods. Special
emphasis is placed on the 2nitely extendable nonlinear elastic (FENE) chain models which account for
molecular stretch, bending, and topology. More coarse-grained descriptions such as primitive path models, and
elongated particle models are reviewed as well. We focus on their inherently anisotropic material—in particular
rheological—properties via deterministic and stochastic approaches. A number of representative examples are
given on how simple (often high-dimensional) models can, and have been implemented in order to enable
the analysis of the microscopic origins of the nonlinear viscoelastic behavior of polymeric materials. These
examples are shown to provide us with a number of routes for developing and establishing coarse-grained
(low-dimensional) models devoted to the prediction of a reduced number of signi2cant material properties.
At this stage approximations which allow for an analytical treatment are discussed as well. Concerning the
types of complex &uids, we cover the range from &exible to semi&exible polymers in melts and solutions,
wormlike micelles, structural suspensions including ferro&uids in 2eld-induced anisotropic or liquid crystalline
phases.
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Nomenclature

(NE)MD, BD, MC (Nonequilibrium) molecular/Brownian dynamics, Monte Carlo simulation
FP, EL, DE, HL Fokker–Planck, Ericksen–Leslie, Doi–Edwarxds, Hinch–Leal
 ; p:: con2gurational/orientational distribution, statistical weighting factor
n; �; � bead number density, volume density, concentration
N; L; Q number of beads within a single chain, chain contour, tube segment length
H;Q0 Hookean spring coeMcient, and maximum extension for FENE spring
b; T; � FENE parameter (b = HQ2

0=kBT ), temperature T , � = (kBT )−1

s dimensionless chain contour position 0¡s¡ 1
B; r shape factor for elongated particles (1: rod, 0: sphere, −1: disk), axis

ratio r
xi position vector of bead i (i = 1 : : : N )
Q;Qj connector(s) between adjacent beads within primitive chain (j=1 : : : N−1)
u; uj unit vector(s) tangential to the primitive path (normalized Q)
L;LFP angular operator L = u × 9=9u, FP di?erential operator
T::, D:: orienting torque and damping terms entering the FP equation
• anisotropic (symmetric traceless) part of tensor •
�; a; ai stress tensor, (anisotropic) alignment tensor (of rank i), a ≡ a2

g dimensionless anisotropic 2nd moment of  for FENE dumbbells
T (k) symmetry adapted basis tensors, Eqs. (8,9), k ∈{0; 1; 2; 3; 4; tr}
ak ; gk components of the alignment (gyration) tensor with respect to T (k)



456 M. Kr�oger / Physics Reports 390 (2004) 453–551

n; S1;2; ::; � director in the EL theory, order parameters, &ow alignment angle
�; D relaxation time, di?usion coeMcient (sometimes labeled by a model)
� tumbling parameter or relaxation time (depends on context)
M ;H ; h magnetization, magnetic 2eld, Langevin parameter
C macroscopic &ow 2eld (shear &ow vx = !̇y, C= !̇e(2) for convenience)
�;! transposed macroscopic velocity gradient (∇C)T, vorticity (∇× C)=2
�;� symmetric and antisymmetric part of the velocity gradient ∇v
!̇; # shear rate or dimensionless shear rate
$; $∗; $1;2;3; %1;2 shear, complex shear, Miesowicz viscosities; 1st, 2nd viscometric

function
&::; !:: EL viscosity and rotational viscosity coeMcients
a+;−;0 shear &ow adapted components of the alignment tensor, Eq. (50)
' parameter for the coarse-graining from atomistic to tapeworm (Section 8.8)
m; j) parameters of the Lennard-Jones and WCA potentials
*ij; I Kronecker symbol *i; j ≡ 1 (i = j) and 0 otherwise; unit tensor of rank 3
j total antisymmetric tensor of rank three

1. Introduction

We hope that the complexity of the world is neither in contrast with the simplicity of the basic
laws of physics [1] nor with the simple physical models to be reviewed or proposed in the following.
However, physical phenomena occurring in complex materials cannot be encapsulated within a single
numerical paradigm. In fact, they should be described within hierarchical, multi-level numerical
models in which each sub-model is responsible for di?erent spatio-temporal behavior and passes
out the averaged parameters to the model, which is next in the hierarchy (Fig. 1). This review
is devoted to the understanding of the nonequilibrium properties of complex &uids such as the
viscoelastic behavior of polymeric liquids, the rheological properties of ferro&uids and liquid crystals
subjected to magnetic 2elds, based on the architecture of their molecular constituents. The topic is
of considerable concern in basic research for which models should be as simple as possible, but
not simpler. Certainly, it also of technological relevance. Statistical physics and nonequilibrium
thermodynamics are challenged by the desired structure–property relationships. Experiments such as
static and dynamic light and neutron scattering, particle tracking, &ow birefringence, etc. together
with rheological measurements have been essential to adjust or test basic theoretical concepts, such as
a ‘stress-optic rule’ which connects orientation and stress, or the e?ect of molecular weight, solvent
conditions, and external 2eld parameters on shape, di?usion, degradation, and alignment of molecules.

During the last decade the analysis of simple physical particle models for complex &uids has de-
veloped from the molecular computation of basic systems (atoms, rigid molecules) to the simulation
of macromolecular ‘complex’ system with a large number of internal degrees of freedom exposed
to external forces. This review should be in several aspects complementary to the ones which ap-
peared recently in this journal. The foundations of molecular and Brownian dynamics methods for
simple microscopic models for macromolecular systems have been extensively revisited [2]. Exciting
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Fig. 1. Time and length scales of a typical polymer problem. In this review we are concerned with micro- and mesoscopic
models (framed) which aim to describe physical behavior beyond equilibrium, beyond chemical details (bottom), and may
be implemented into the macro-computation of complex &ows (top).

progress in the 2eld of physical models (of the simple type to be discussed in this article) for
polymer adsorption at thermodynamical equilibrium has been reviewed [3]. Constructive methods
of invariant manifolds for kinetic problems should be reviewed in a forthcoming paper [4]. Multi-
scale simulation in polymer science with special emphasis on coarse-grained models (including a
soft-ellipsoid model) has been recently reviewed by Kremer and Muller-Plathe [5]. In the light of
these and further modern reviews on physical micro- and mesoscopic models to be mentioned be-
low our focus is placed onto aspects which have been less extensively considered. Upon these are
orientation and entanglement e?ects, the implications of stretchability, &exibility, order parameters,
scission and recombination on material properties of anisotropic, dilute and concentrated polymeric
bulk &uids in the presence of macroscopic &ow and electromagnetic 2elds.

This review is 2rst of all concerned with the applicability and suitability of bead–spring multi-chain
models which incorporate 2nite extensibility of segments (so-called FENE models, cf. Table 1),
molecular architecture and &exibility, and capture topological interactions. Second, it aims to give
an overview about the range of applications of simple mesoscopic theories, in particular primitive
path models and elongated particle models, where topological aspects are either approximately treated
or disregarded. In view of a rapidly growing amount of research and number of publications on these
topics, we try to present a balanced selection of simple, representative examples, connect them with
related research, and thereby get in touch with a large—still not exhaustive—number of classical and
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Table 1
Recommended nomenclature for 2nitely extendable nonlinear elastic (FENE) models (for dilute/concentrated solutions,
melts, etc., cf. Fig. 3)

Model For 2nitely extendable ... Ref.

Simulation (linear or branched chains) NEMD/NEBD:
FENE Linear &exible classical polymers including dumbbells

(N = 2)
[42] or Eq. (1)

FENE-n Branched &exible classical polymers, including H-shaped
(maximum functionality n = 3), star polymers (n¿ 3)

[42] or Eq. (1)

FENE-B Linear semi&exible (B for ‘bend’) classical polymers,
actin 2laments

Eq. (48)

FENE-Bn Branched FENE-B, maximum functionality n, semi&exible
classical networks

Eq. (48)

FENE-C FENE which allows for unimolecular scission and re-
combination (C for ‘cut’), wormlike micelles, equilibrium
polymers

[31] or Eq. (5.2)

FENE-Cn FENE-C, maximum functionality n, living &exible and sat-
urated networks

[31] or Eq. (5.2)

FENE-CB Semi&exible FENE-C, associative polymer networks Eq. (47)
FENE-CBn Semi&exible FENE-Cn, living semi&exible non-saturated

networks
Eq. (47)

Analytic (linear chains), approximate explicit constitutive equations:
FENE-P (P for ‘Peterlin’) approximation for FENE dumbbells,

second moment as single state variable
[43–45]

FENE-P2 Second-order Peterlin model [37]
FENE-PM Small set of equations approximating FENE-P chains [46,47]
FENE-PCR Also known as FENE-CR, Peterlin approximation plus a

non-constant di?usion coeMcient
[48]

FENE-PCD Also known as FENE-CD, Peterlin approximation plus a
con2guration dependent di?usion coeMcient

[49]

FENE-L Second-order L-shaped closure model for FENE chains [37]
FENE-LS Simpli2ed version of FENE-L [50]
FENE-PMF FENE-P supplemented by a mean-2eld (MF) interaction

term modeling concentration e?ects
[51], Section 2.1

Models based on the Peterlin approximation should carry a ‘P’, models for branched macromolecules should be suf-
2xed by the maximum functionality considered (for linear chains, n = 2, it is understood that the suMx 2 is skipped).
Many of the proposed simulation models have not been extensively studied, and analytic approaches such as FENE-Pn
(Peterlin approximation for branched FENE chains) are missing.

modern approaches. In order to keep this review short, we do not summarize knowledge available
from standard text books. We therefore do not provide an introduction to the simulation methods
used, the theory of stochastic di?erential equations, the statistical physics of simple, molecular, and
macromolecular liquids, linear response theory, rheology, or experimental methods. We are going to
cite the relevant original literature where implementation details can be found.

The existence of universality classes is signi2cant for the theoretical description of polymeric
complex &uids. Any attempt made at modeling polymer properties might expect that a proper
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Fig. 2. Simple microscopic models for complex &uids with increasing level of abstraction and decreasing degrees of free-
dom (lhs, bottom to top), and their sketched range of application: (a) atomistically detailed polymer which accounts for
anisotropic intermolecular interactions including entanglements, (b) coarse grained model via a mapping (Section 8.8)
to a ‘primitive path’, (c) further approximated by a multibead (nonlinear FENE) chain, (d) further coarse-grained
to a (FENE) dumbbell which accounts for entropic elasticity and orientation but not for entanglement e?ects, and
(e) ellipsoids of revolution—including rigid rods, dissipative particles, with spherical or mean-2eld interaction. Models
must meet the requirement of being thermodynamically admissible.

description must incorporate the chemical structure of the polymer into the model, since this de-
termines its microscopic behavior. Thus a detailed consideration of bonds, sidegroups, etc. may be
envisaged. However, the universal behavior that is revealed by experiments suggests that macroscopic
properties of the polymer are determined by a few large scale properties of the polymer molecule.
Structural details may be ignored even for microscopic (beyond-atomistic) models since at length
scales in the order of nanometers, di?erent polymer molecules become equivalent to each other, and
behave in the same manner. This universal behavior justi2es the introduction of crude mechanical
models, such as bead–spring chain models, to represent real polymer molecules (Fig. 2).

The FENE chain model and its variations can be considered as a maximum coarse-grained, still
brute force simulation model to the physical properties of polymeric &uids. These models did not fail
to describe rheooptical material properties quite satisfactory when solved without approximation, but
are often numerically expensive while conceptually simple. FENE chains constitute the appropriate
level of description in order to test polymer kinetic theory [6,7], and assumptions made to simplify
their analysis. In this article we should discuss several realizations in detail, hope to stimulate
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FENE-B FENE-C

FENE-3

FENE

FENE

SOLVENT

Fig. 3. Simple FENE models for a range of macromolecular &uids to be treated in a uni2ed fashion: with/without
solvent (simple &uid) for linear/star/branched, &exible/semi&exible, bulk/con2ned/tethered, non-/breakable macromolecules,
cf. Table 1. Charged, tethered polymers have been excluded from the review since an excellent review is available in this
series [3].

advanced treatments, and therefore disregard many other realizations (FENE chain models for star
polymers, co-polymers, polymer blends, brushes, polyelectrolytes, in order to mention a few).

The dynamics of a single, &uorescing, DNA macromolecule held at one end by ‘optical tweez-
ers’ and subjected to a uniform &ow was successfully compared with simulations [8] of a FENE
chain that accounted for the molecule’s entropic elasticity, Brownian motion, and hydrodynamic drag.
Using self-di?usion data and analytical expressions to obtain this drag in the limits of the undeformed
coil and of the fully stretched thread, these results once more con2rmed the success of the FENE
chain model in predicting the rheological properties of simple polymeric systems. Excellent agree-
ment between the theoretical predictions based on the FENE models and data from experimentation
indicated that the model also seemed able [9] to interpret the underlying physical mechanisms for the
dynamics of polymer solutions [10–12], melts [13–15], copolymer melts [16,17], brushes [18] not
only in the quiescent state, but also subjected to &ow 2elds [9,10,19–28]. During the last decade, the
FENE chain model has been extended to incorporate the e?ect of scission, recombination (FENE-C)
and branching of chains in order to investigate the formation and development of complex micellar
systems and networks [16,29–32], cf. Fig. 3. The model has been further extended (FENE-B) to in-
corporate semi&exibility of chains [33–36], and studied in con2ned geometries. To give an overview
about the range of applicability of the suMciently detailed and simple microscopic models, we
restrict ourselves to the formulation and analysis of models for particulate &uids and validate
them against experimental data.

The nomenclature given in Table 1 is recommended in order make the search for results obtained
for extensions of the original FENE dumbbell more comfortable. Actually, the most complete sum-
mary of the various ‘analytic’ FENE models may be found in [37]. Con2guration tensor models
such as the FENE-P and more general quasi-linear models (Johnson–Segalman, Gordon–Schowalter,
Phan–Thien/Tanner, etc.) have been also developed in a fully nonisothermal setting [38–40]. NEMD
together with a dissipative particle dynamics (DPD) thermostat had been successfully applied to study
the shear-induced alignment transition of diblock copolymer melts, surfactants and liquid crystals in
a large-scale system [16], based on an e?ective simpli2ed continuum model for FENE dumbbells
[41] biased towards phase separation. Simpli2ed versions of FENE chain models neglect &exibility
or 2nite extensibilty and have been widely used. Rigid elongated particles further neglect stretcha-
bility. Models dealing with these objects will be reviewed in certain detail as long as the simpli2ed
description turns out to be appropriate (unentangled: dilute polymers, rigid molecules: liquid crys-
tals). Some space will be reserved for the discussion on the connection between the di?erent levels
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of description, projection operators, coarse-graining procedures, and the theory of nonequilibrium
thermodynamics which sets a framework for simple physical models.

In Section 2 FENE dumbbell models are presented. In the quiescent state, polymers in dilute so-
lution should have negligible interactions with each other on purely geometrical grounds, in contrast
to semi-dilute or concentrated solutions and melts. The &ow behavior of polymer solutions is, how-
ever, more complex than that of the familiar Newtonian &uids. Within these solutions shear thinning
and the Weissenberg e?ect [6] are typical phenomena of technological importance. These e?ects are
found to be strongly correlated with &ow-induced conformational changes of the dissolved polymer
chains and they can be dramatic in dilute solutions. Orientation and deformation of chain molecules
can, and has been measured in &ow birefringence light scattering and neutron scattering experiments
(for methods and references see [52]), and via computer simulation [53–56]. For a review on molec-
ular orientation e?ects in viscoelasticity we refer to Ref. [57]. For this introductory section we will
be concerned with approximate solutions for FENE dumbbells (with N = 2 beads) in the in2nitely
dilute and dilute regimes.

Section 3 is next on the hierarchy and treats multibead chains (N ¿ 2 beads) in dilute solu-
tions. We start from a stochastic approach to polymer kinetic theory. The model takes into account
con2guration-dependent hydrodynamic interaction (HI) and simpli2es to the Zimm bead–spring chain
model in the case of preaveraged HI, for which parameter-free ‘universal ratios’ such as the ratio
between radius of gyration and hydrodynamic radius are known. The Chebyshev polynomial method
and a variance reduction simulation technique [58] are revisited to implement an eMcient NEBD sim-
ulation. The full dependence of several characteristic ratios vs both chain length and hydrodynamic
interaction parameter is resolved, and compared with analytical and experimental results. Polymer
solutions under good solvent conditions have been also studied extensively via NEMD by taking into
account explicit solvent particles, e.g., in Refs. [53–56,59]. In that case, hydrodynamic interactions
and excluded volume are incorporated through momentum transfer and a WCA potential between
beads, respectively.

Section 4 demonstrates insights obtained by NEMD into the microscopic origin of the nonlinear
viscoelastic properties of (dense) polymer melts by using a FENE chain model. Stress–strain relation-
ships for polymer melts are the main requirement for the conventional &ow simulation of polymer
processing, useful in modelling industrial applications including injection moulding, 2lm blowing,
and extrusion. The reliability and accuracy of such simulations depends crucially on the constitutive
equations. Although closed-form phenomenological models have been widely used in research and
commercial codes, their degree of success is limited because of a lack of physical ingredient on the
molecular level. For the purpose of realistic modelling, and further development of semiempirical
constitutive equations, full FENE chain models are shown to be uniquely suited.

Section 5 extends the FENE chain system in several directions. We o?er explicit examples of
recently established models: wormlike micellar systems modelled by a FENE-C potential, model
liquid crystals composed of semi&exible FENE chains, as well as a model for semi&exible (FENE-B,
actin) 2laments and networks. Results for the models are obtained by NEMD or NEBD, though we
will also discuss analytic descriptions that are able to guide the interpretation of important aspects
of the results.

Section 6 o?ers illustrative examples on how to formulate and handle kinetic model equations
for primitive paths (coarse-grained atomistic chains) by approximate analytical or ‘exact’ numeri-
cal treatments. The role of topological interactions is particularly important, and has given rise to
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a successful theoretical framework: the ’tube model’. Progress over the last 30 years had been re-
viewed in the light of specially synthesized model materials, an increasing palette of experimental
techniques, simulation and both linear and nonlinear rheological response in Ref. [7]. Here we review
a selected number of improved versions of primitive path models which allow to discuss the e?ect
of approximations on the linear and nonlinear rheological behavior of polymer melts. Brute force
FENE chain simulation results summarized in the preceding chapters are used to test the assumptions
made in the formulation of these kinetic models.

Section 7 deals with elongated particle models. There are many early approaches in the literature
to the modelling of &uids with simple microstructure. For example, equations for suspensions of
rigid particles have been calculated by averaging the detailed motion of the individual particles in
a Newtonian &uid. In particular, the solution for the motion of a single ellipsoid of revolution in
a steady shear [60] in terms of a Fokker–Planck (FP) equation has been used to determine the
governing equations for the slow &ow of a dilute suspension of noninteracting particles. In more
concentrated systems, various approximations to the particle motions have been used. Hinch and Leal
[61] have named this approach, based upon a detailed analysis of the microstructure, ‘structural’.
Alternatively, ‘phenomenological’ continuum theories for anisotropic &uids have been postulated.
These theories tend to be quite general, being based upon a small number of assumptions about
invariance. Perhaps the most successful and well-known example is the Ericksen–Leslie (EL) director
theory for uniaxial nematic liquid crystals. Additionally, numerous models have been developed and
discussed in terms of symmetric second and higher order tensorial measures of the alignment. Given
these diverse methods of derivation and apparently diverse domains of application, one may ask if,
and how, such diverse approaches may be interrelated. The answer and several examples (including
concentrated suspensions of rod-like polymers, liquid crystals, ferro&uids) are given in this section.

Section 8 is an attempt to review several strategies and open questions concerning the thermody-
namically admissible description of complex nonequilibrium &uids on di?erent levels (conc. length
and time scales or structural details) of description. We will touch the theory of projection opera-
tors which act on the space coordinates of atoms such that the resulting quantities serve either as
slow variables needed to proceed with a separation of time scales in the corresponding Langevin
equations. Attempts being made to characterize the system with (a few) structural quantities, known
to be within reach of analytical theoretical descriptions and/or accessible through experimentation
will be reviewed. A similar formal structure, namely a symplectic structure, for thermodynamics
and classical mechanics was noted early by Peterson [62] in his work about the analogy between
thermodynamics and mechanics. He notes that the equations of state, by which he means identi-
cal relations among the thermodynamic variables characterizing a system, are actually 2rst-order
partial di?erential equations for a function that de2nes the thermodynamics of the system. Like the
Hamilton–Jacobi equation, such equations can be solved along trajectories given by Hamilton’s equa-
tions, the trajectories being quasi-static processes, obeying the given equation of state. This gave rise
to the notion of thermodynamic functions as in2nitesimal generators of quasi-static processes, with
a natural Poisson bracket formulation. In this case the formulation of thermodynamic transforma-
tions is invariant under canonical coordinate transformations, just as with classical mechanics. These
illuminating ideas have been further developed [63,64] and generalized Poisson structures are now
recognized in many branches of physics (and mathematics). We are therefore also concerned with the
formulation of so-called ‘thermodynamically admissible’ simple models for complex &uids, where
admissibility is assumed whenever the complete set of state variables characterizing the systems
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possess the ‘General Equation for the Non-Equilibrium Reversible-Irreversible Coupling’ (GENERIC)
structure [40]. This structure (a special representation of a less predictive ‘Dirac’ structure which
also contains the Matrix model by Jongschaap [65] as a special case, connections between thermo-
dynamic formalism are revisited in [66]) requires a Poisson bracket for the reversible part of the
dynamics. Speci2cally, the time-structure invariance of the Poisson bracket as manifested through
the Jacobi identity has been used to derive constraint relationships on closure approximations [67].
An explicit coarsening procedure from atomistic chains (or FENE chains, Section 4) to primitive
paths (Section 6, Fig. 2) is given in Section 8.8.

2. FENE dumbbell models in in�nitely diluted solution

Dumbbell models are very crude representations of polymer molecules. Too crude to be of much
interest to a polymer chemist, since it in no way accounts for the details of the molecular architecture.
It certainly does not have enough internal degrees of freedom to describe the very rapid motions
that contribute, for example, to the complex viscosity at high frequencies. On the other hand, the
elastic dumbbell model is orientable and stretchable, and these two properties are essential for the
qualitative description of steady-state rheological properties and those involving slow changes with
time. For dumbbell models one can go through the entire program of endeavor—from molecular
model to &uid dynamics—for illustrative purposes, in order to point the way towards the task that
has ultimately to be performed for more realistic models. According to [6], dumbbell models must,
to some extend then, be regarded as mechanical playthings, somewhat disconnected from the real
world of polymers. When used intelligently, however, they can be useful pedagogically and very
helpful in developing a qualitative understanding of rheological phenomena.

Before we turn to FENE chain models with increasing complexity and predictive power for en-
tangled polymeric systems, we should summarize some of the e?orts undertaken to analyze various
approximations to the original FENE dumbbell model for in2nitely dilute solutions. This model can
be rigorously solved by Brownian dynamics (BD) and had been used in the pioneering micro–macro
simulations [68].

A FENE dumbbell consists of two beads (mass points) connected with a nonlinear spring.
Its internal con2guration is described by a connector vector Q. The FENE spring force law is
given by [42,45,6]

F (FENE) = − HQ
1 − Q2=Q2

0
; (1)

with H and Q0 denoting the (harmonic) spring coeMcient and the upper limit for the dumbbell
extension. The singularity of the force at Q2 =Q2

0 is the mathematical implementation of the dumb-
bell’s 2nite extensibility. The FENE spring is a valid approximation to a chain of freely rotating
elements (the Kramers chain) as long as the number of elements is large, and it gives a reasonable
approximation for the entropy of chains of 2nite length. An in2nitely dilute FENE polymer solution
is modeled by a suspension of FENE dumbbells in a continuous, Newtonian solvent, where the
dumbbell beads are centers of a hydrodynamic drag force, exerted by the surrounding solvent. As-
suming Stokes law the drag force is considered being proportional to the relative velocity between



464 M. Kr�oger / Physics Reports 390 (2004) 453–551

solvent and bead, with a constant -, the friction coeMcient. Point of departure for the statistical
analysis is the di?usion equation for the con2gurational distribution function  (Q; t)

9 
9t =

2kBT
-

T +
2
-
∇ · {F } −∇ · {(� ·Q) } : (2)

Here, T is the absolute temperature, kB denotes Boltzmann’s constant, and F = F (FENE) denotes the
deterministic force. The Laplacian and nabla operators refer to derivatives in con2guration space.
Time dependent expectation values with respect to  will subsequently be denoted by angular brack-
ets 〈: : :〉, and the FENE parameter b ≡ HQ2

0=kBT , the relaxation time � ≡ -=4H and a dimensionless
shear parameter # ≡ �! will be often used. We will be (throughout this review) concerned with
homogeneous &ow whose transposed velocity gradient is denoted as � ≡ (∇C)†, i.e., C= � · r. This
enables us to carry out the calculations in the frame of a special coordinate system, the one 2xed by
the center of mass of the dumbbell, the directions of the axes are speci2ed by the &ow geometry.
Notice, that (2) can be solved analytically only for potential &ows [6].

The FENE dumbbell model has been originally used to describe non-Newtonian rheological e?ects
in monodisperse and idealized in2nitely dilute polymer solutions with [69–71] or without hydrody-
namic interaction [42,45], and to interpret scattering patterns [71–73]. Analytic theories—except those
we are going to illustrate in more detail in the next section—have been restricted to in2nitely dilute
solutions based on a one-particle-description, in which interactions with surrounding molecules have
not been considered. The FENE dumbbell with the pre-averaging Peterlin approximation (FENE-P)
has been used extensively to describe the rheological behavior of dilute [6] polymer solutions. The
model is, however, severely limited, since it cannot describe the broad distribution of relaxation
times that real polymer molecules possess. Detailed comparisons of various FENE dumbbell models
for dilute solutions conc. its rheological behavior in shear, elongational [74,75] and also turbulent
&ows [76] are available. It was shown that while in the linear viscoelastic limit and in elongational
&ow the behavior is close, in shear and turbulent &ows serious deviations appear. Fairly understood
(in terms of a FENE-P model, cf. Ref. [75]) is the e?ect of drag reduction upon adding small
amounts of polymers to highly viscous liquid, which are transported through (long) pipelines.

The FENE-P chain, which is conceptually located between FENE-dumbbell models and full FENE
chain models, however, has not been as widely used because of the large number of coupled equations
that must be solved simultaneously in order to calculate the stress tensor. In Ref. [46] the FENE-PM
chain, as a ‘good’ and eMcient approximation to the FENE-P chain had been introduced. The re-
duced number of equations greatly expedites calculations for longer chains. It had been demonstrated
[77,78] by means of standard and stochastic numerical techniques that the pre-averaging Peterlin ap-
proximation used to derive the FENE-P macroscopic constitutive equation has also a signi2cant
impact on the statistical and rheological properties of the full FENE chain model.

2.1. FENE-PMF dumbbell in =nitely diluted solution

Results of light scattering experiments on dilute polymer solutions in various concentrations below
the (equilibrium) overlap concentration have revealed a strong concentration dependence of the
polymer conformation in shear &ow [79]. In order to present yet another candidate for describing
the observed phenomena in an approximate fashion, for illustrative purposes, in order to introduce
the Peterlin approximation and basis tensors for later use, and before turning to the recommended
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full FENE models in the next sections, let us treat the FENE dumbbell model supplemented by
a mean 2eld term which describes the concentration dependence in the frame of a one-particle
description. The basic idea [55] is to consider interactions between di?erent molecules in an averaged
approximation.

2.2. Introducing a mean =eld potential

The mean 2eld term models the e?ect of concentration induced anisotropy caused by inter- as well
as intramolecular interactions in the polymer solution. An expression for the mean 2eld potential
can be adapted from theories for concentrated solutions of rodlike polymers [80] and liquid crystals
[81,82] or obtained by carrying out a 2nite multipole expansion of the intermolecular pair potentials,
in which the unknown multipole moments are taken to be phenomenological coeMcients [83]. The
series has to be written down to an order, which, after averaging with the con2guration distribution
function, leads to a nonconstant and anisotropic expression involving the tensor of gyration, i.e. up
to the quadrupole–quadrupole interaction. The corresponding mean 2eld force reads

F (MF) =
kBT
Q2

0
f
( c
c∗
)
〈 QQ 〉∗ ·Q : (3)

The symbol : : : denotes the irreducible (symmetric traceless) part of a tensor, QQ = QQ − I =3,
n is the concentration (mass density) of the polymers in solution, n∗ is a reference concentration.
The scalar function f represents a phenomenological coeMcient. If it is assumed to be zero for
in2nitely dilute solutions data of [79] suggest f = (c=c∗)1=3 with a characteristic concentration c∗.
This means f is proportional to the reciprocal average distance between the molecules. The ansatz
di?ers from the ones used in [80–82] in the respect that a connector vector Q with variable length
enters the expression for the potential instead of a unit vector specifying the direction of a rod.

2.3. Relaxation equation for the tensor of gyration

By multiplying (2) for homogeneous &ows with QQ and subsequent integration by parts, with
F = F (FENE) + F (MF), we obtain

d
dt
〈QQ〉 =

4kBT
-
I +

4
-
{〈F (FENE)Q〉 + 〈F (MF)Q〉} + � · 〈QQ〉 + 〈QQ〉 · �† : (4)

The second moment will be expressed in a dimensionless form g ≡ 〈QQ〉∗ ≡ 〈QQ〉=Q2
0. For a

stationary shear &ow (plane Couette geometry) with shear rate !̇ the second-rank gradient tensor
� is given by 123 = !̇ *21*23 if we denote with e(1) the &ow direction, e(2) the gradient direction,
and e(3) = e(1) × e(2) the vorticity direction. For this geometry the orientation angle � and the mean
square dumbbell elongation 〈Q2〉 are related to the tensor g by [84] tan 2� = (2g12)=(g11 − g22),
and 〈Q2〉=Q2

0 = g�� = Tr g, while the tensor of gyration 1
4〈QQ〉 equals 1

4Q
2
0 g. In dilute solutions the

tensor of gyration is assumed to be isotropic under equilibrium conditions. By construction the mean
2eld potential vanishes under equilibrium conditions, since it is linear in the irreducible part of the
gyration tensor.
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Next, we wish to obtain a closed approximate set of equations for a stationary solution of the
relaxation equation (4). Inserting (1) and (3) and the explicit expression for � into (4) yields

1
b
*23 =

〈
Q2Q3

Q2
0 − Q2

〉
− 1

b
f
( c
c∗
)
〈 Q2Q� 〉∗〈Q�Q3〉∗ − #{*21〈Q2Q3〉∗ + *31〈Q2Q2〉∗} : (5)

We choose a standard decoupling approximation, referred to as Peterlin approximation [6,43,44],
modi2ed such that it is exact in equilibrium. Thus, a term equal to zero is added and subsequently
approximated by carrying out the involved averaging under equilibrium conditions. This can be done,
because the equilibrium distribution function  eq for the given problem is known [42,6]. Coupled
moment equations may be alternatively derived by making use of a Taylor series expansion for the
expectation value associated with the FENE force term, cf. [51,45,6]. One obtains〈

Q2Q3

Q2
0 − Q2

〉
≈ 〈Q2Q3〉∗

1 − 〈Q2〉∗ −
{

〈Q2Q3〉∗eq
1 − 〈Q2〉∗eq

−
〈

Q2Q3

Q2
0 − Q2

〉
eq

}

=
〈Q2Q3〉∗
1 − 〈Q2〉∗ −

{
1

b + 2
− 1

b

}
*23 : (6)

Use had been made of the isotropic moments (after Taylor expansion) which become ∀n〈Q2n〉∗eq ≈∏n
k=1(2k + 1)=(b + 2k + 3). Insertion of the (6) into (5) yields the desired closed set of nonlinear

equations

g
1 − Tr g

− 1
b
f
( n
n∗
)
g · g − �(� · g + g · �†) =

I
b + 2

: (7)

Explicit equations for the components g23 can be derived most conveniently in a symmetry-
adapted form.

2.4. Symmetry adapted basis

The symmetric second-rank tensor of gyration has six independent components. In the plane
Couette geometry two more components vanish for symmetry reasons, because invariance under
the transformation e(3) → −e(3) is required. An exception will be discussed in Section 7.6. The
corresponding four independent components of the second moment are g11, g12, g22, and g33. We
transform (7) to a version which separates the irreducible and trace-dependent parts of the tensor
of gyration, since these are especially emphasized in the terms associated with the FENE and mean
2eld forces. The irreducible part of the tensor is decomposed with respect to a set of pseudospherical
cartesian basis tensors. This will result in a simple expression for the orientation angle and in a more
tractable expansion for small shear parameters. The resulting equations are easily decoupled in this
case. A set of orthonormal basis tensors T (k) with k =0; 1; 2; tr is chosen according to [85,86] whose
elements are given by

T (0) = (3=2)1=2 e(3)e(3) ; T (1) = 2−1=2(e(1)e(1) − e(2)e(2)) ;

T (2) = 21=2 e(1)e(2) ; T (tr) = 3−1=2(e(1)e(1) + e(2)e(2) + e(3)e(3)) (8)
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with the orthonormality relation ∀k; lT
(k)
23 T (l)

23 = *kl. Note, that T (0), T (1), and T (2) are symmetric
traceless, while T (tr) is associated with the trace of a tensor. Two more ‘symmetry braking’ basis
tensors

T (3) = 21=2 e(1)e(3) ; T (4) = 21=2 e(2)e(3) (9)

will be used in connection with ‘rheochaotic states‘ in Section 7.6. The tensor g23 can be decomposed
according to g23 =

∑
k gkT

(k)
23 with gk = T (k)

23 g23. The orientation angle � and the (mean square)
dumbbell elongation 〈Q2〉∗ now take the form tan 2�=g2=g1, 〈Q2〉∗=

√
3gtr . Using the decomposition

and the orthonormality relation a set of coupled non-linear equations for the pseudospherical and
trace-dependent components of g is derived from (7):

g(0) = −#

√
3

3
g2 − J ((g2

1 + g2
2 − g2

0) +
√

2g0gtr) ;

g(1) = #g2 − J (2g1g0 −
√

2g1gtr) ;

g(2) = #

(
gtr

√
6

3
+

g0
√

3
3

+ g1

)
− J (2g2g0 −

√
2g2gtr) ;

g(tr) = #

√
6

3
g2 + J (g2

0 + g2
1 + g2

2) +

√
3

b + 2
;

with g(i) ≡ gi

1 −√
3 gtr

; J ≡ b−1 f(c=c∗)=
√

6 : (10)

Note that Eqs. (6), (7), (10) correct some misprints in [51]. We cannot give an analytical solution of
the system without carrying out further approximations, which would result in a signi2cant change
of the model. For small dimensionless shear rates #, however, exact analytical expressions for the
orientation angle and the dumbbell elongation are tan 2� = (1 − �)=(b̃ #) and

〈Q2〉∗ =
3

b + 5

{
1 +

2
3

(
1 −
(

1 − 1√
2

)
�
)

(1 − �)−2b̃3 #2

}
(11)

with � = �(c) ≡ f(c=c∗) (b + 2)=(b(b + 5)2) and b̃ ≡ (b + 2)=(b + 5). These expressions show that
for a given shear rate the orientation angle decreases and the radius of gyration increases with rising
(still small) concentration. Of course, they reduce to the ones known for FENE dumbbels at zero
concentration (c = � = 0). For Hookean dumbbell the relations for � and 〈Q2〉∗ are obtained for
b → ∞, b̃ = 1.

For larger shear rates the system of coupled nonlinear equations (10) has to be solved numerically.
Solutions are restricted to a limited range of f (or �). To illustrate the in&uence of the mean 2eld
term, results are presented for a 2xed value of b= 1 for the FENE parameter (the signi2cance of b
in the original theory has been well analyzed in [42,45]). For comparison, we will show plots for the
dumbbell elongation and the orientation angle for various b and di?erent concentration parameters.

In Fig. 4 the radius of gyration in units of the equilibrium radius is given for di?erent con-
centrations vs dimensionless shear rate #. For given rate, the radius of gyration increases with
rising concentration. The relative increase is larger for smaller shear rates, because with rising shear,
the deformation is limited by Q0. Fig. 5 shows the related plot for the orientation angle. For all
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Fig. 4. Radius of gyration in units of its equilibrium value vs shear parameter # for concentration parameters of f = 0,
2, 4, and 6, and a FENE parameter b = 1 [51].
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Fig. 5. Orientation angle versus shear parameter #, see Fig. 4 for the choice of parameters. Dashed curve according to
a linear bead spring theory resulting in tan 2� = #−1 [51].

concentrations the curve di?ers from the simple law tan 2�˙ !̇−1 ˙ #−1, which results from linear
theories or from perturbation results of low order. A dashed curve referring to the simple law is
given for comparison.

The quantity g ≡
√

g2
1 + g2

2 shown in Fig. 6 is a measure for the degree of alignment into the
shear plane. As expected, we 2nd an increasing anisotropy with rising concentration. The in&u-
ence of the FENE parameter b is presented in Figs. 7 and 8. The shear rate is given in units of
a characteristic time constant � = � b=3 for FENE dumbbells in this case to achieve comparability
with results from the original theory [42,45]. The mean 2eld in&uence is controlled by variation of
� which characterizes the mean 2eld magnitude independently of b in the case of small shear rates.
In the range of higher shear rates the dumbbell elongation falls with rising concentration parameter
(Fig. 7). Especially for higher b, the elongation is now limited by the mean 2eld, not by the 2nite
extensibility.
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1=2 related to pseudospherical components of the tensor of gyration vs shear
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Fig. 7. FENE dumbbell elongation vs shear parameter �!̇ = b#!̇=3 for various b and di?erent concentration
parameters � [51].

2.5. Stress tensor and material functions

The polymer contribution to the stress tensor �p for the FENE dumbbell takes the form of an
extended Kramers expression [6], cf. Section 8.7,

�p = n〈(F (FENE) + F (MF))Q〉 + n kBT I : (12)

Using (4) and the de2nition of the convected time derivative *=*t(: : :) ≡ d=dt(: : :)−� ·(: : :)−(: : :) ·�†
leads to �p=(n-=4)*=*t〈QQ〉. This is similar to a Giesekus expression [6] resulting from the original
FENE dumbbell theory. The shear &ow material functions for the &uid in a plane Couette geometry
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Fig. 9. Reduced viscosity vs shear parameter �!̇ for various b and di?erent concentration parameters � [51].

[6] are therefore given as functions of the tensor of gyration. In particular, we have

$p

$p;0
= (b + 5) g22 = (b + 5)

(√
3

3
gtr −

√
6

6
g0 −

√
2

2
g1

)
(13)

for the reduced viscosity $p ≡ �xy!̇−1 and

%1

%1;0
= (b + 5)

g12

#
= (b + 5)

√
2g2

2#
(14)

for the reduced 2rst viscometric function %1 ≡ ()xx − )yy)!̇−2. The 2nd viscometric function %2 ≡
()yy − )zz)!̇−2 is equal to zero in the present case. Fig. 9 shows the reduced viscosity versus shear
parameter �!̇ for various b and two di?erent concentration parameters �. There is a stronger shear
thinning e?ect for � �= 0. These results compare well with data from light scattering experiments
[79,51] such that there is no need to present detailed comparisons (which can be also found in
Refs. [87,88]).

With increasing concentration (close to and above the overlap concentration) correlations between
di?erent molecules become stronger and the one-particle description has to be abandoned [89,90].
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Scattering experiments have been performed on semi-dilute polymer solutions at rest and in laminar
shear &ow at di?erent temperatures by SANS [91] and by (small angle) light scattering (SALS)
[92–94] as well as by dynamic light scattering [95].

2.6. Reduced description of kinetic models

Numerical implementation of kinetic models in direct numerical &ow calculations is in general
computationally expensive. This is especially true for chain models to be discussed in later sections.
However, kinetic models of polymer dynamics may serve as a starting point for the derivation of
constitutive equations. Derivations are not straightforward but require approximations to the under-
lying kinetic model. The need for so-called closure approximations occurs also in other branches
of statistical physics and several suggestions for such approximations have been proposed in the
literature (see e.g. [96] and references therein). The frameworks ‘reduced description’ and ‘invariant
manifolds’ have been developed to eMciently obtain an approximate solution for FP equations for
FENE dumbbells and liquid crystals [97] and of the types to be discussed later in this review. In
Ref. [98] the authors give a compact non-technical presentation of two basic principles for reduc-
ing the description of nonequilibrium systems based on the quasiequilibrium approximation. These
two principles are: Construction of invariant manifolds for the dissipative microscopic dynamics,
and coarse-graining for the entropy-conserving microscopic dynamics. It had been demonstrated in
general and illustrated how canonical distribution functions are obtained from the maximum en-
tropy principle, how macroscopic and constitutive equations are derived therefrom and how these
constitutive equations can be implemented numerically [99,97]. A measure for the accuracy of the
quasiequilibrium approximation had been proposed that can be evaluated while integrating the con-
stitutive equations. Within the framework of reduced description, equations of change for the ‘dual’
variables appearing in an ansatz for the distribution function play a major role. The method has been
further applied to ferro&uids in Ref. [100]. Constructive methods of invariant manifolds for kinetic
problems are going to be reviewed elsewhere [4]. A closely related approach using projectors will
be shortly discussed in Section 8.7.

3. FENE chain in dilute solution including hydrodynamic interactions

Various experimental observations reveal an important aspect of the behavior of polymer solutions
which is not captured by FENE dumbbell models. When the experimental data for high molecular
weight systems is plotted in terms of appropriately normalized coordinates, the most noticeable
feature is the exhibition of universal behavior. By this it is meant that curves for di?erent values of
a parameter, such as the molecular weight, the temperature, or even for di?erent types of monomers
can be superposed onto a single curve. For example, when the reduced intrinsic viscosity is plotted
as a function of the reduced shear rate, the curves for polystyrene in di?erent types of good solvents
at various temperatures collapse onto a single curve [6]. There is, however, an important point that
must be noted. While polymers dissolved in both theta solvents and good solvents show universal
behavior, the universal behavior is di?erent in the two cases. An example of this is the observed
scaling behavior of various quantities with molecular weight. The scaling is universal within the
context of a particular type of solvent. The term universality class is used to describe the set of
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systems that exhibit common universal behavior [101]. Thus theta and good solvents belong to
di?erent universality classes.

As pointed out in 1948 [102], the perturbation of the solvent &ow 2eld induced by suspended
spherical particles (‘beads’) leads to an additional interaction between beads, the so-called HI. Incor-
poration of this e?ect into the classical Rouse model for dilute polymer solutions makes the resulting
model equations—containing a HI matrix—nonlinear. Predictions for some material properties were
found to become much more realistic when HI is accounted for [6,68,72,73,15,103,104]. In the usual
discussion of HI, one linearizes the Navier–Stokes equation (NSE) and assumes that the propagation
of solvent &ow perturbations is in2nitely fast. If the beads are point particles one obtains for the
perturbation of the &ow at position r: TC(r) =�(r− r′) · F(r′), where F(r′) is the force exerted by
a bead at point r′ on the solvent, and �(r) is the Green’s function of the time-dependent linearized
NSE, known as Oseen–Burgers tensor (one has to require �(0)= 0 in order to avoid hydrodynamic
self-interactions).

There appear to be two routes by which the universal predictions of models with HI have been
obtained so far, namely, by extrapolating 2nite chain length results to the limit of in2nite chain length
where the model predictions become parameter free, and by using renormalization group theory
methods. In the former method, there are two essential requirements. The 2rst is that rheological
data for 2nite chains must be generated for large enough values of N so as to be able to extrapolate
reliably, i.e., with small enough error, to the limit N → ∞. The second is that some knowledge of
the leading order corrections to the in2nite chain length limit must be obtained in order to carry out
the extrapolation in an eMcient manner. It is possible to obtain universal ratios in the zero shear
rate limit in all the cases [68].

The di?usion equation, sometimes referred to as FP equation, for the con2gurational distribution
function  (t; r1; r2; : : : ; rN ) for a chain with N beads reads [105,68] subject to homogeneous &ows
(� was de2ned in Section 2)

9 
9t = −

N∑
i=1

9
9ri

·
(
� · ri + 1

-

∑
j

Hij · Fj

)
 +

kBT
-

∑
i; j

9
9ri

·Hij · 99rj  (15)

with the HI matrix Hij ≡ H(rij) = *ij1 + -�(rij). In the Itô approach, the stochastic di?erential
(Langevin) equations of motions for bead positions equivalent to the FP equation (15) are

dri =

(
� · ri + 1

-

N∑
j

Hij · Fj

)
dt +

√
2kBT
-

dSi ; (16)

where dSi ≡
∑

j Bij · dWj(t); W denotes a Wiener process (Gaussian white noise vector); B is
related to the HI matrix through the &uctuation–dissipation theorem Hij =

∑N
k Bik · BT

jk and Fj

denotes the sum of (other than HI, i.e. spring) forces on bead j. Eq. (16) is the starting point for a
NEBD computer simulation, the only tool available for treating chains with HI rigorously. There are
two possibilities for restoring a positive-semide2nite di?usion term when the assumption of point
particles fails (one implicitly introduces a bead radius through Stokes monomer friction coeMcient
-): one can prevent the beads from overlapping, or one can modify the Oseen–Burgers HI tensor.
In the following application we will use � according to the regularization proposed by Rotne et al.
[106]. The Langevin equation (16) cannot be solved in closed form. In order to obtain a tractable
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form, in 1956 Zimm replaced the random variables �rij by their equilibrium (isotropic) averages,
i.e., Hij → Hij1 with the N ×N matrix Hij = *ij + h∗(1− *ij)(2=|i− j|)1=2 and a HI parameter [107]

h∗ ≡ -
68$s

√
H

8kBT
; (17)

where H denotes the harmonic bead–spring coeMcient. The parameter h∗ can be expressed as h∗ =
ab=(8kBT=H)1=2 which is roughly the bead radius ab over the root-mean-square distance between two
beads connected by a spring at equilibrium, hence 0¡h∗ ¡ 1=2. For analytical and experimental
estimates of h∗ see [105,108,6]. For the Zimm model h∗ = 1=4 minimizes the e?ect of chain length
and the very short and long chain limits can be elaborated analytically.

3.1. Long chain limit, Cholesky decomposition

For several reasons, the long chain limit is important. It is independent of the details of the me-
chanical model, and hence is a general consequence of the presence of HI and equilibrium averaged
HI for the Zimm model [68], respectively. For long chains it should be observed that h∗ occurs
only in the combination -=h∗ in all material properties. Therefore, the parameter h∗ has no observ-
able e?ect on the material properties of long chains. Power law dependences of various material
properties on molecular weight M ˙ N with universal exponents are expected (see Section 8.2.2.1
of [109]) and, from the prefactors, one can form universal ratios [68]. The universal exponents and
prefactors are ideally suited for a parameter-free test of the model by means of experimental data
for high molecular weight polymer solutions. We obtained estimates by extrapolation from extensive
and eMcient simulation.

3.2. NEBD simulation details

A coarse-grained molecular model represents the polymer molecules: the FENE bead–spring chain
model, i.e., N identical beads joined by N − 1 (anharmonic) springs. The solvent is modeled as
an incompressible, isothermal Newtonian homogeneous &uid characterized by its viscosity $s. The
solution is considered to be in2nitely diluted, and the problem is limited to the behavior of one
single molecule. In combination with the variance reduction scheme, chain lengths comparable to
real conditions (e.g., N = 300, cf. Section 4) are now coming within reach of simulations.

The decomposition of the di?usion matrix H to obtain a representation for B (e.g., Cholesky
decomposition) for long chains is expensive and scales with N 3. A highly eMcient method [110] is
based on an approximation of the square root function in Chebyshev (tensor) polynomials Tk of the
2rst kind, following the notation in [111],

B =
√
H ≈

L∑
k=1

ckTk−1(H) − 1
2
c1 ; (18)

where the recursive formula

Tk+1(H) = 2H · Tk(H) − Tk−1(H) ; (19)

together with T0(H)=1 and T1(H)=H de2ne these polynomials. For a 2xed L, (18) is a polynomial
in H which approximates B in the interval [ − 1; 1] (concerning the eigenvalues of H), where all
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the zeros of Tk are located. The sum can be truncated in a very graceful way, one that does
yield the ’most accurate’ approximation of degree L (in a sense which can be made precise). The
convergence of the Chebyshev polynomial approximation requires that the eigenvalues of the matrix
H are within the interval [−1; 1]. Actually, this is not the case, and one introduces shift coeMcients,
ha and hb in order to apply the recursion formula to the ‘shifted’ matrix H ′ ≡ haH + hb1 whose
eigenvalues should be within the desired range. This requirement is ful2lled for ha = 2=(:M − :0),
2 hb = −ha(:M + :0), where :0 and :M denote the minimum and maximum eigenvalues of the
original HI matrix H , respectively [104]. The coeMcients of the series are readily obtained by
standard methods [112,111]: cj =L−1∑L

k=1 &
L
kj (b+ +b− cos[8(k−1=2)=L])1=2, with coeMcients b+ ≡

(ha + hb)=2, b− ≡ (hb − ha)=2, and the abbreviation &L
kj ≡ 2 cos[8(j − 1)(k − 1=2)=L]. Instead of

calculating the square root matrix 2rst, thus implying several time consuming matrix by matrix
products for the evaluation of the polynomials of the series, and afterwards its product with the
random W vector, the desired vector is obtained directly as a result of a series of di?erent vectors
V , recursively calculated only through less expensive matrix (H) by vector (V) products, i.e., one
replaces dSi in Eq. (16) by dSi = (

∑L
k ckTk−1(H ′) − 1c̃1) · dWj(t) =

∑L
k ck dV i

k−1 − c̃1 dWj. with
c̃1 = c1=2. The recursion formula for dV i

k ≡ Tk(H ′) · dWi is immediately obtained from (19). Its
evaluation requires an e?ort ˙ N 2 for every k = 1; 2; : : : ; L. The overall computational demand of
the method we use scales with N 2L˙ N 9=4 per time step as shown in [104]. The eigenvalue range
applied in the implementation of this idea is speci2c for the problem under study. In general, one
has to ensure that the degree of violation of the &uctuation–dissipation theorem (with respect to an
eligible matrix norm) is small enough to obtain exact moments of the distribution function with a
desired accuracy, e.g., along the lines indicated in [113], in order to prevent a direct calculation of
eigenvalues. There is an increasing interest in using iterative schemes to decompose the HI matrix,
e.g. [113–117,73,118–124,110].

In addition to this decomposition method a variance reduction simulation technique has been
implemented in [104] to reduce the statistical error bars (see also Ref. [68, p. 177]). For this purpose
two simulations are run in parallel, one at equilibrium, and another undergoing steady shear &ow but
using the same sequence of random numbers. After a certain time interval the desired magnitudes
are sampled, and the chain simulated under steady shear &ow is (periodically) reset to the state of
the chain in equilibrium. Simulations for this model have been further performed, e.g., for the case
of step shear deformation in [125]. The Cholesky decomposition has been recently applied within
an accelerated Stokesian dynamics algorithm for Brownian suspensions [126] and for simulations of
supercooled DNA [127].

3.3. Universal ratios

The most interesting theoretical predictions for experimentally accessible quantities are those
which are independent of any physical parameters. In the limit of in2nitely long chains the Zimm
model predicts a di?usion coeMcient limN→∞ Dh = ch∗kBT=(-

√
N ), radius of gyration limN→∞ Rg =

(NkBT=2H)1=2, and spectrum of relaxation times limN→∞ �Zimm
j =cj(N=j)2=3-=(4h∗H82) with c1 =1:22

and cj = 28j=(28j − 1) for j¿ 1 [138].
Having established these relationships for the Zimm model one can construct and de2ne a num-

ber of universal ratios for experimentally accessible quantities. The universal quantity URD ≡ Rg=Rh

=68$sDhRg=(kBT ) is the ratio between radius of gyration and hydrodynamic radius, the latter quantity
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Table 2
Analytical, experimental and numerical results for the zero shear rate limit. E.g., Fixman estimated URD = 1:42 [134] but
could not estimate U$R due to the slow convergence of rheological properties $ (and also %1;2)

URD U$R U%$ U%% U$� U%S

Theory
Rouse [68] ˙ N−1=2 ˙ N+1=2 0.8 0 1.645 ˙ N
Zimm [68] 1.47934 1.66425 0.413865 0 2.39 20.1128
Consist. average [105] 1.66425 0.413865 0.010628
Gaussian approx. [128] — 1.213(3) 0.560(3) −0:0226(5) 1.835(1) 14.46(1)
Twofold normal Zimm [128] — 1.210(2) 0.5615(3) −0:0232(1) 1.835(1) 14.42(1)
Renormalization [108] — 1.377(1) 0.6096(1) −0:0130(1) — 20.29(1)
Oono et al.∗ [129] 1.56(1) — — — — —
)Ottinger∗ [130] — — 0.6288(1) — — 10.46(1)

Experiment
Schmidt et al. [131,132] 1.27(6) — — — — —
Miyaki et al. [133] — 1.49(6) — — — —
Bossart et al. [71] — — 0.64(9) — — —
Bossart et al.∗ [71] — — 0.535(40) — — —

Simulation
Fixman [134] (NEBD) 1.42(8) — — — — —
de la Torre et al. [135] (NEBD) 1.28(11) 1.47(15) — — 2.0 —
Rubio et al. [136] (MC) — ¿ 1:36(5) — — — —
Garcia Bernal et al.∗ [137] (NEBD) 1.48(15) 1.11(10) — — —
Aust et al.∗ (NEMD) [56] 1.41(6) — — — — —
Kr)oger et al. (NEBD) [104] 1.33(4) 1.55(6) 0.45(7) 0.05(4) — 19(2)

The asterisk marks results obtained taking into account excluded volume. The estimates of de la Torre et al. and
Bernal et al. [135,137,117] were obtained by extrapolation from their results for h∗ = 1=4 [104].

can be actually measured experimentally in a dynamic experiment, e.g., by observing the relaxation
time of the dynamic scattering function S(q; t) for small momentum transfers qRg�1. The universal
ratio U$R ≡ limc→0 $p=(c$s(48R3

g=3)) is a measure for the speci2c polymer contribution $p to the
reduced shear viscosity, U%$ ≡ limc→0 ckBT%1=($2

p) gives the ratio between 2rst viscometric func-
tion and squared polymer contribution to the shear viscosity, U%% ≡ %2=%1 is the ratio between
the second and 2rst viscometric function, U$� ≡ limc→0 $p=(ckBT�1) re&ects the proportionality be-
tween $p and the longest relaxation time, and U%S ≡ kBT%1=(c$2

sR
6
g) (also introduced in [68]) is

just a combination of two of the above universal ratios. For the Zimm model one infers U$� from
$p=ckBT =

∑
j �j. From these ratios one can, for example, eliminate the unspeci2ed proportionality

coeMcients in the ‘blob’ theory of polymer statistics [139,140].
Universal ratios are collected in Table 2. It contains results for diverse theoretical approaches such

as obtained by the Zimm model, the Gaussian approximation, a consistent averaging procedure, and
renormalization group calculations, together with experimental and numerical 2ndings. The estimates
for the exact long-chain limit are extrapolated from NEBD data, where the polymer contribution to
the stress tensor and radius of gyration needed to analyze universal ratios are calculated directly
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from bead trajectories. In particular, the monomer di?usion coeMcient D and radius of gyration Rg

are sampled from bead trajectories {ri(t)} according to D = limt→∞ (
∑N

i=1 [ri(t) − ri(0)]2)=(6Nt)
and R2

g =
∑

i [ri − rc]2=N , respectively, where rc denotes the center of mass of the molecule. The
simulation reveals that the power law regime for monomer di?usion D will be obtained earlier
than the one for the more ‘global’ Rg. By analogy to classical results for the di?usion of a sphere
embedded in a Newtonian liquid the hydrodynamic radius (of the corresponding sphere) is de2ned
by Rh = kBT=(68$sD). An independent discussion about relaxation times for this system, needed
to determine U$� can be found in [135]. As for the Zimm model, simulation results reveal that
the radius of gyration converges more fast to its long chain limit than the hydrodynamic radius.
In Ref. [105] the leading corrections to the limit of in2nitely long chains have been estimated
in the framework of a generalized Zimm model for dilute polymer solutions. They are of the
following form:

Ui(h∗; N ) = Ũ i +
ci√
N

(
1
h∗i

− 1
h∗

)
; (20)

for i∈{RD; $R; etc:}. A careful analysis of the simulation data (last row of Table 2) yields the
following results for the coeMcients de2ned through (20):

ŨRD = 1:33 ± 0:05; cRD = −0:49; h∗RD = 0:267 ;

Ũ $R = 1:55 ± 0:04; c$R = 1:9; h∗$R = 0:250 ;

Ũ%$ = 0:29 ± 0:1; c%$ = −0:20; h∗%$ = 0:261 ;

Ũ%% = 0:05 ± 0:1; c%% = 0:05; h∗%% = 0:247 : (21)

As expected from [105] the values h∗i for which the leading order corrections are absent do not
coincide for the various functions Ui. Since functions (20) for a given i and di?erent HI parameters
appear as a set of converging straight lines in the representations of raw data in Figs. 10 and 11 it
is obvious, that the data for URD is represented better by the expression (20) than the data for the
remaining universal ratios.

4. FENE chains in melts

A dense collection of repulsive FENE chains serves as a suitable microscopic model for both en-
tangled and unentangled polymer melts. We will consider once more linear and monodisperse chains
although FENE models are immediately applicable to polydisperse polymers with arbitrary architec-
tures. Besides its success for the study of polymer melts at equilibrium [141–143,15], the nonlinear
viscoelastic and structural properties of FENE chain models such as viscosities and scattering pat-
terns are in accordance with experimental results for shear- and elongational &ows [19,144–147,20].
Due to the computational demands caused by the strong increase of relaxation time with molecu-
lar weight (M) only recently it has been observed, that the basic model also exhibits the experi-
mentally observed rheological crossover, certainly related to the ability of polymers to form knots
(topological constraints) between macromolecules which is further discussed in [7,148–155]. The
crossover manifests itself in a change of power law for the zero shear viscosity at a certain M .
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Fig. 11. The ratio U%$ , cf. Fig. 10 [104].

For FENE melts, FENE forces of the type (1) act between all adjacent beads (next neigh-
bors) within chains, and the repulsive part of the radially symmetric Lennard-Jones (LJ) potential
(often called WCA potential, introduced by Weeks et al. [156]) is added between ALL pairs of
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beads—within cuto? distance—in order to model excluded volume,

F (WCA)(r) = jF (WCA)∗(r=));

F (WCA)∗(r) = −∇r4(r−12 − r−6 + 1=4) = −24
(

r6 − 2
r12

)
r
r2 ; r6 21=6 (22)

and F (WCA)∗ (r¿ 21=6) = 0 where r denotes the distance between two interacting beads. Here and
in the following all dimensionless quantities which are reduced to the usual LJ-units of [157–159]
are denoted by an asterisk only if otherwise ambiguities could arise. We refer to Ref. [160] for the
discussion of an alternative short range potential, and to Section 4.3 for the reduced units appearing
in Eq. (22).

4.1. NEMD simulation method

The total radially symmetric force F between pairs of beads for the FENE multichain system
is F = F (WCA) + F (FENE) and F = F (WCA) for adjacent and non-adjacent beads, respectively. As in
[141,142,19] for melts the FENE spring coeMcients H = 30 and Q0 = 1:5 (at temperature T = 1,
LJ units) chosen strong enough to make bond crossings energetically infeasible and small enough to
choose a reasonable integration time step during the NEMD simulation, which integrates Newton’s
equation of motion for this system via a velocity Verlet algorithm (conc. the application reviewed in
this section). The simulated systems presented in the next section consist of 3× 105 beads arranged
in chains with N = 4–400 beads each. A stationary, planar Couette &ow in x-direction (gradient
in y-direction) with shear rate !̇ will be imposed [19]. Neighbor lists, Lees–Edwards boundary
conditions [157], and layered link cells [161] are used to optimize the computer routines, In contrast
to the standard procedure for equilibrium simulations we update the list of pair dependencies on an
upper limit for the increase of the relative separation of these pairs, not on the absolute motion of
individual particles. Temperature is kept constant by rescaling the magnitude of the peculiar particle
velocities which corresponds to the Gaussian constraint of constant kinetic energy [159] for small
integration time steps. Alternative constraint mechanisms (con2gurational, Nose–Hoover thermostats,
etc.) have been extensively discussed elsewhere, and are still under discussion. Since simulation
runs are CPU time consuming it should be mentioned that the generation of well quasiequilibrated
dense samples for simulations is of particular relevance. Several codes have been developed which
attempt to reach pre-equilibration (at given density) using Monte Carlo, tree-based, fuzzy logic, neural
network strategies, to mention a few. The NEMD simulation method is—in principle—independent
of the choice for a particular FENE model. Some of the codes are also available in the literature
[34,162], or can be obtained from the author.

4.2. Stress tensor

The stress tensor � (equals the negative friction pressure tensor), a sum of kinetic and potential
parts, is calculated from its tensorial virial expression

� = − 1
V

〈
Nb∑
i=1

c(i)c(i) +
1
2

Nb∑
i=1

Nb∑
j=1

r(ij) F(r(ij))

〉
; (23)



M. Kr�oger / Physics Reports 390 (2004) 453–551 479

where V is the volume of the simulation cell, Nb is the total number of beads, r(i) and c(i) are
the spatial coordinate and the peculiar velocity of bead i within a polymer chain, respectively,
r(ij) ≡ r(i) − r( j), and F is the pair force. The stress tensor is accessible as time average from
the calculated bead trajectories. For dense &uids, the main contribution to the rheological properties
stems from the potential part of the stress tensor, except for the case of highly aligned samples.
Material function such as viscosities and shear moduli are de2ned in terms of the stress tensor and
&ow parameters [6]. The oMcial nomenclature is periodically published by the Journal of Rheology.

4.3. Lennard-Jones (LJ) units

For any measurable quantity A with dimension kg& m� s! one has A = AdimlessAref and Aref =
m&+!=2r�+!

0 j−!=2, where ); j provide the length and energy scales via the LJ potential and the
monomeric mass m via Newton’s equations of motion. Speci2cally, the reference quantities for
density, temperature, time and viscosity are nref = )−3, Tref = j=kB, tref = )

√
mj, $ref = )−2

√
mj.

We therefore have to deal exclusively with j = ) = 1 in (22). See Section 4.7 for a comment on
how to interpret dimensionless simulation numbers.

4.4. Flow curve and dynamical crossover

For the FENE chain melt, rheological properties were extracted for various shear rates over eight
decades from !̇=10−8 to !̇=1 for N =4–400 [163,144]. For the short chains (N ¡ 20) a weak shear
dilatancy is detected. With increasing shear rate the trace of the pressure tensor decreases due to the
intramolecular bond stretching. The non-Newtonian viscosity $ ≡ )xy=!̇ is shown for di?erent chain
lengths and rates in Fig. 12. The FENE chain melt is shear thinning, and approaches a power law
curve $˙ !̇−& independent of M with the exponent &=0:5±0:2. From the non-Newtonian viscosity
$ in Fig. 12 the zero rate viscosity $0 [6] can be estimated. This quantity clearly exhibits a crossover
from a Rouse-type regime $0 ˙ N 1 to $0 ˙ N3¿3 (inset of Fig. 12) It is well represented by the
expression $0 = 0:7N (1 + Z3−1) with a number of ‘rheologically relevant’ entanglements per chain
Z ≡ N=Nc and exponent 3 = 3:3 ± 0:2. The zero rate 2rst viscometric function %1 ˙ ()yy − )xx)=!̇2

[6] is found to exhibit a crossover at the same critical chain length.
Elliptical contours in the structure factor of single chains and their rotation against &ow gradient

direction have been analyzed and plotted against wave number in order to visualize the (di?erent)
degree of orientation on di?erent length scales inside a polymer during shear &ow, see also Fig. 13
for a schematic drawing.

4.5. Characteristic lengths and times

For the characteristic relaxation times �N de2ned from the onset of shear thinning at shear rate
!̇ = !̇N ≡ 1=�N we obtain from the NEMD simulations: �N ˙ N≈2 for short chains, in accordance
with the Rouse model predictions. Based on careful measurements of monomer di?usion coeMcients
and further properties for the FENE chain melt obtained from MD simulations [141,142] with up
to N = 400 beads per chain a ‘dynamical’ crossover has been observed. A characteristic length was
found which marks the crossover between ‘Rouse’ to ‘reptation’ di?usion regimes, for which the
di?usion coeMcients ideally scale as D˙ 1=N and D˙ 1=N 2, respectively. The plateau modulus G0

N ,
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Fig. 12. Non-Newtonian shear viscosity $ of the FENE model vs shear !̇ (LJ units) for di?erent chain lengths N . Inset:
Zero rate shear viscosity $0 vs chain length. Adapted from Ref. [163].

from which the entanglement Me can be rigorously deduced [165] has been reported for the FENE
chain melt in Ref. [166] for chains up to N = 104 from the shear stress plateau during relaxation
after step strain. The reported value for Ne is about a factor 2.3 larger than the one reported for the
dynamical crossover in [141], and thus rather close to the critical weight Nc =100± 10 obtained via
NEMD in [163].

The commonly experimentally accessible quantities characterizing a polymer melt at certain tem-
perature are its monomer density �, average M , monomer mass m, squared end-to-end distance per
monomer b2 ≡ 〈R2=N 〉, the critical and entanglement weights, Mc =mNc and Me =mNe, respectively,
and the Kuhn length bK . These quantities are related to the bond length b0 =b2=bK , the characteristic
ratio C∞ = bK=b0, and the so-called tube diameter dT = b

√
Ne. It has been suggested recently [167]

that both Ne and Nc can be calculated from �, b2 and a 2xed length p ≈ 10−9 m. In order to compare
with the simulation results one has to rewrite this 2nding in dimensionless form, which is actually
only possible for Ne and then states: Ne ˙ �p3 with a packing length p ≡ 1=[�

〈
R2=M 〉] = 1=(nb2).

This de2nition is rewritten as (compare second last column of Table 3)

Ne ˙ C∞(p=bK)2 = [1=(nb3)]2 ; (24)

or ndTb2 = ce with a proportionality coeMcient ce = 21 ± 2, where n denotes monomer number
density.

A corresponding relationship for Mc was also proposed [163] (compare last column of Table 3)

Nc ˙ C3=2
∞ (p=bK) = 1=(nb2

0b) ; (25)

in agreement with the simulation data, and a proportionality coeMcient of about c2
e =5 such that

C∞
√
Ne ≈ 4Nc. Thus, one is led to the prediction Nenb3

0 ¿Nc for very &exible chains with
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Fig. 13. Di?erences between local and global order of polymeric FENE chains under shear &ow conditions are revealed
via the NEMD structure factor of single chains, (top left) Structure factor extracted by NEMD, projected to shear plane,
(top right) Contour 2t allows to extract the half axes (half wave numbers) of ellipses and the rotation angle �. (bottom)
Rotation angle vs wave number. Experimental results by [164] serve as a reference.

C∞ ¡ 1:9. Predictions are summarized in Fig. 14. The possibility for the existence of materials
with Nc ¡Ne has been proposed earlier by Fetters et al. [167]. Statement (25) has the advantage
upon the one in [167] that it exclusively contains dimensionless quantities, and thus allows for
a veri2cation by computer simulation. Eqs. (24), (25) imply, that Nc is inversely proportional to
the number of monomers in the volume bb2

0, whereas
√
Ne is inversely proportional to the number

of monomers in the volume b3. Under equilibrium conditions the simulated FENE chains exhibit
an average bond length b0 = 0:97, b = 1:34b0, hence C∞ = b2=b2

0 = 1:79 and p=bK = 0:404. Rela-
tionship (24) predicts a simulation value Ne ≈ 120 which is slightly above the one reported for
Nc, a factor of 3–4 above the one reported for a dynamical crossover in [141,142], and just by
a factor of 1.5 above the one reported from direct measurements of the relaxation modulus [166]
(Fig. 15).

The reported 2ndings underline the relevance of the FENE model in predicting static, dynamic
and &ow behaviors of real polymers for arbitrary weights. Beside the investigation of rheological
behaviors of FENE melts the simulation of bead trajectories allows to analyze, for example, the
degree of &ow-induced orientation of chain segments, the validity of the so-called ‘stress-optic rule’,
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Table 3
The table contains representative experimental data and the simulation data (FENE model) in dimensionless form

Polymer T � b0 [ XA] dT [ XA] C∞
Nc

100
pn1=3 p=bK

√
Ne

NcC∞
Ne

C∞

(
bK

p

)2 Nc

C3=2
∞

(
bK

p

)
PE 443 K 0.78 1.45 40.0 7.6 3.0 0.60 0.17 0.25 453 84
PS 490 K 0.92 1.51 88.6 9.9 7.0 0.92 0.29 0.26 454 81
P&MS 459 K 1.04 1.57 76.7 10.5 6.9 0.80 0.22 0.27 451 85
PIB 490 K 0.82 1.62 73.4 5.8 6.1 0.97 0.40 0.18 384 109
PDMS 298 K 0.97 1.70 74.6 6.0 6.6 0.92 0.36 0.17 417 119

FENE j=kB 0:84
m
)3

0:97) 1:3)
√
Ne 1.79 1 0.66 0.40 0.018

√
Ne 3.4 Ne 103

All experimental quantities listed are obtained from literature data for (i) the ratio between squared end-to-end distance
and M , (ii) the mass of a repeating unit m, (iii) the critical (from shear &ow) and entanglement weights (from plateau
modulus), and (iv) bond length b0 (or C∞) at temperature T , monomer density � (in g=cm3), monomer number density
n = �=m, packing length p (see text part). The last three columns contain universal numbers, if the proposed scalings
(24), (25) are valid.

0

rigid

0.5

 1.0

1.4

 0.4

Ne [nb0
3 ]

2

C   = 28 , lp = b0

Nc [nb0
3 ]

1.0

2.0

0.5

2.5

n p/b0

C 8

b/b0

flexible

L
o

g
10

  q
u

an
ti

ty

Log10 bK/b0

1

2

3

0 1.5

1

1 3
: (NE) MD data

Fig. 14. Scaling behavior of crossover and entanglement molecular weights according to Eqs. (24), (25). The 2gure
contains the predicted behavior (lines) as well as experimental (full symbols) and simulation results (open symbols,
symbol 1 for Nc [163], 2 for Ne [166], 3 for Ne [142]).

the degree of entanglement [169] anisotropic tube renewal, and therefore renders possible the test of
coarse-grained descriptions in later sections.

4.6. Origin of the stress-optic rule (SOR) and its failures

Shear &ow together with elongational &ows are essential for the understanding of the &ow prop-
erties of &uids in complex &ows [8,170–172,146,20]. We wish to further demonstrate the impact
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Fig. 15. The single chain structure factor for stretched samples with equal values of &ow birefringence for samples ful2lling
(bottom) or not (top) the SOR. The 2gure compares data from SANS experiments (left) [168] and NEMD simulation
(right). Due to the fact, that orientational relaxation is fast on a local scale, the overall extension of the polymer has to
be much larger for samples ful2lling the SOR, i.e., at high temperatures or low rates, in order to exhibit the same local
alignment.

of the FENE chain melt model for the investigation of the microscopic origins of experimentally
observable transport and optical phenomena. One of the aspects of practical relevance (in particular
for rheooptics) concerns the validity of the stress-optic rule (SOR), a proportionality between stress
and alignment tensors, which is ful2lled for polymer melts under ‘usual’ conditions. Along with
the spirit of this review, we focus on studies in the nontrivial regime, where the proportionality is
known to be at least partially lost, i.e., at temperatures close to the glass transition temperature Tg
or at high elongation rates. To this end we discuss results obtained during constant rate uniaxial
elongational &ow followed by relaxation after reaching a constant stretching ratio [146]. Experimen-
tally measured rate dependencies of the stress-optical behavior of amorphous polymers undergoing
elongational &ow at temperatures close above Tg are reported in Fig. 16. For the lowest rates only
small deviations from the ‘equilibrium curve’ have been detected, where the SOR is valid. For the
higher elongation rates the curves exhibit a stress overshoot, and a stress o?set )o? for which ap-
proximate values vs the reduced elongation rate aTj̇ are given in Fig. 16b. The phenomenological
description of the viscoelastic behavior of amorphous polymers in the region where deviations of
the SOR appear has been adjusted many times within the last decades, cf. [52,146] and references
cited herein.



484 M. Kr�oger / Physics Reports 390 (2004) 453–551

Fig. 16. (Left) Experimental data taken from for birefringence (Tn) vs tensile stress for a commercial polystyrene
subjected to uniaxial elongational &ow (open symbols, at T = 102:7◦C, rate j̇= 0:2 s−1) and subsequent relaxation (2lled
symbols). The crosses represent the behavior at high temperatures (‘equilibrium curve’ [164]). A ‘stress-o?set’ and thus a
failure of the stress-optic rule is evident and interpreted through NEMD results for FENE chains in the text part. (Right)
Corresponding stress o?set values vs the reduced elongation rate j̇aT . Adapted from Ref. [146].

In the NEMD simulation, a time-dependent uniaxial isochoric homogeneous elongational &ow in
x-direction with elongation rate j̇= 9vx=9x is imposed via rescaling of the dimension of the central
box [173,20]. Rheological information under uniaxial &ow is contained in the ‘uniaxial’ component
of the stress tensor (23) or ‘tensile stress’: ) ≡ )xx− ()yy +)zz)=2. The (2nd rank) alignment tensor,
the anisotropic second moment of the orientation distribution function of segments [6],

a ≡ 〈uu〉 − 1
3
I ; (26)

is extracted directly as an ensemble average from the dyadic constructed of the normalized segment
vectors between beads (adjacent beads accordingly labeled) u(i) ≡ r(i+1)−r(i) tangential to the chains
contour. The alignment tensor is considered being proportional to the refractive index tensor of the
&uid [174,52] whose relevant information for the case of uniaxial elongational &ow in x-direction
we denote by �n ≡ axx − (ayy + azz)=2. The stress-alignment diagram, obtained by NEMD in [146]
compared very well with the experimental data, cf. Fig. 16a, and thus motivated to investigate
microscopic origin of the observed behavior. In particular, results for diverse (intra/intermolecular,
kinetic/potential, attractive/repulsive, non/nearest neighbor) contributions to the stress tensor as re-
vealed in Figs. 5 and 6 of Ref. [146] and also results for shear &ow [19] imply that the stress tensor
� for the FENE chain melts can be written essentially as the superposition of three terms

� ≈ �bonded + C−1a + �̃simple︸ ︷︷ ︸
�nonbonded

; (27)

where �bonded denotes the stress contribution from nearest neighbors within polymer chains (bond
pushing/stretching and/or bond orientation), C is the linear stress-optic coeMcient for the regime
where the SOR is valid, and �̃simple is proportional to the stress which is measured for a corresponding
simple &uid by removing all bonds (i.e. FENE springs) within the system. A value C=0:32 has been
independently con2rmed from NEMD simulation on weak shear &ow in Refs. [19,146]. See Fig. 17
for a schematic drawing. For ‘small’ &ow rates and/or temperatures large compared with the ‘bonded’
(‘intra’, nonsigni2cant stretch) and ‘simple’ (proportional to &ow rate) contributions become small
compared to the SOR contribution such that—according to (27) the validity of the SOR is expected
in these regimes. The nonbonded stress hence originates the SOR for the microscopic FENE model.
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Fig. 17. Schematic drawing clarifying the origin of hysteretic behavior (deviations from the stress-optic rule SOR) in
the stress-optic diagram for uniaxial elongational &ow of FENE polymer melts according to Ref. [146]. The measured
(total, tensile) stress is the sum of bonded (intra) and nonbonded interactions, where the nonbonded interactions appear
to carry a part which is proportional to alignment (i.e. ful2lling the SOR) and another one, which is behaving like
the one for a corresponding simple ‘Newtonian’ &uid (FENE bonds removed). The simple and intra stresses become
increasingly relevant with decreasing temperature (or increasing rate due to the time temperature superposition principle).
The intra-stress dominates if bond stretch (due to 2nite extensibility of chains) comes into play.

This 2nding has been further discussed in [145,146]. In this context one should notice, that the
splitting (27) is qualitatively di?erent from the one into stresses of predominantly entropy–elastic
and energy–elastic origin as discussed in [175,176].

Eq. (27) o?ers a crude but useful approximation to the stress in polymer melts. It allows to predict
rheological properties for the many chain FENE model, based on a single chain model.

In Ref. [146] the degree of stretch and orientation of the polymer chains on di?erent length
scales (and ‘collective’ deformations) have been also measured and analyzed in order to allow for a
critical test of alternative pictures which were proposed earlier to describe deviations from the SOR.
Upon these models (which have been ruled out) are those which assume stretching of few selected
segments, thus leaving the measured anisotropy of chains largely unchanged. Just at a late stage of
elongation when segmental stretching leads to a strong increase in )bonded, local inhomogeneities in
bond stretchings/contractions are observed while expression (27) remains valid.

Experimentally, &ow induced alignment on di?erent length scales is measured via the single chain
structure factor Ssc (from deuterated samples, de2nition provided by Eq. (46)) and &ow birefringence
or infrared dichroism. While the latter quantities measure the alignment tensor (Eq. (26), probing the
anisotropy of segments), at small wave numbers (Guinier regime), Ssc resolves the gyration tensor.
cf. Figs. 15 for both experimental and FENE chain data for an elongated polymer melt.

4.7. Interpretation of dimensionless simulation numbers

A word of caution concerning the interpretation of dimensionless results is in order. Simulation
has to deal with quantities in terms of reference units for mass, length and energy. These have to be
obtained by comparing experiment with simulation and provide the basic length ()) and energy (j)
scale of the LJ potential as well as the mass (m) of a bead in solving Newton’s equation. Although
some freedom exists in how to adjust three dimensionless units, an accepted one is to obtain the
reference energy from the measured temperature jref = TkB, the bead mass from the real Nc divided
by the simulated one, and )2 from the ratio between measured and simulated end-to-end-distances.
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Sample data such as reported in Table 3 motivates obtaining reference units for any simulated
quantity for the study of particular materials. For polyethylene (polystyrene), e.g., we deduce a
reference length ) = 5:3(9:7) XA, a reference mass m = 42:3(364) g=mol, and a reference energy
j=kB = 443(490) K. From m; ); j one immediately obtains reference values for any other quantity
such as viscosity, time, stress etc. by dimension analysis:

√
mj=)2 = 0:07(0:07) m Pa s, )

√
m=j =

1:8(9)×10−12 s, 40(7:5) MPa, 0:46(0:67) g=cm3, 553(109) GHz. Corresponding reference values for
other polymers are obtained along this procedure. Care has to be taken when predicting quantities
which are sensitive to the ratio between the systems longest and shortest relaxation time (�Nc=�1)
such as the shear viscosity (proportional) and the shear rate at the onset of shear thinning (inversely
proportional). To illustrate this, for polystyrene the simulation predicts the correct zero shear viscosity
$0 =

√
mj=)2#$∗0 = 68 Pa s (at N =Nc) for a factor # = 104 which happens to be equal to the ratio

of relaxation times �Nc=�1 =104. Accordingly, from the onset of shear thinning at shear rate !̇=10−4

obtained for the FENE chain melt at N = Nc (see Fig. 12) we predict for the real shear rate
(for polystyrene) !̇c = !̇∗()=#)−1

√
j=m = 1100 s−1 which is again in agreement with experimental

2ndings [165]. As a result, the shear stress at onset of shear thinning is correctly reproduced without
adjustment by #, i.e., ($c!̇c)=($∗c !̇∗c ) = 7:5 MPa for polystyrene.

5. FENE-CB chains

In order to be prepared for the analysis of the &exible FENE-C (FENE model which allows for
scission/recombination), FENE-B (which allows for bending sti?ness) and FENE-CB &uids (both
bending sti?ness and scission) to be discussed below, we summarize results for the con2gurational
statistics of wormlike chains (WLC) in external 2elds by using the method of functional integrals
(FI) in quasimomentum space. From the correlation functions, statistical properties of WLCs, such
as gyration radius and scattering functions can be obtained. By varying the bending rigidity the
WLC exhibits a crossover from an ideal Gaussian chain to a rodlike chain. Simulations on the WLC
model are widely available, see e.g. Refs. [177–180].

In 1960 Edwards [181] proposed a continuum model for polymer chains. For the ideal Gaussian
chain, the FI can be solved exactly, and after taking excluded volume into account, a perturbation
expansion as well as the renormalization group method are used to study the con2gurational statistics
of polymer solutions [182–186].

5.1. Conformational statistics of wormlike chains (WLC)

The wormlike chain (WLC) model was 2rst proposed by Kratky and Porod [187] and extended
to the continuum level in [188,183]. It is described by a statistical weighting factor p for a polymer
contour path r(s) with contour position s (imaged as time) 06 s6L:

pWLC(r(s)) ˙ exp
(
− 3

2l

∫ L

0
u2(s) ds− 1

2

∫ L

0
u̇2(s) ds

)
; (28)

where L is the contour length of the chain, 1 the bending elastic coeMcient, u(s) ≡ 9r(s)=9s the
di?erential (tangent) of the curve, and u̇ ≡ 9u=9s. Using the constraint |u(s)| = 1 a series solution
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for the tangent distribution (Green’s function) G(u; u′;L; 0) has been derived in [188]. Releasing
the constraint and considering stretchable chains, end-to-end distances and the tangent distribution
have been derived by using the method of Feynman [189,183]. Later it turned out that functionals
in momentum space often used in 2eld theories are a convenient method of studying properties
of WLCs [33]. For a uniform system, the con2gurational statistics of WLCs can be accessed by
considering the correlation function

C(R1; r2; s1; s2)˙ 〈*(r(s1) − R1)*(r(s2) − R2)〉
˙ 〈*(r(s1) − r(s2) − R)〉˙ C(R; s) ; (29)

where R = R1 − R2, s = s1 − s2, 06 s1, s26L and 〈::〉 denotes a statistical average over various
con2gurations of the chain by FI. The correlation function (29) is actually more fundamental than the
end-to-end functions for WLCs [190], caused by chain end e?ects, except in the limit of Gaussian
chains (1 → 0).

5.1.1. Functional integrals for WLCs
We consider a polymer chain which is described by a three-dimensional curve r(s) with 06 s6L.

For convenience, the in2nite long chain limit is taken then the normal mode coordinate, i.e., the
Fourier transformation of r(s) is obtained as [191] r(s)=1=

√
28r̂(k)eiks dk, satisfying r̂(k)= r̂∗(−k)

because r(s) is real. The statistical weighting factor pWLC[r̂(k)] for the WLC is, according to (28),

pWLC[r̂(k)] ˙ exp
(
− 3

2l

∫
k2r̂2(k) dk − 1

2

∫
k4r̂2(k) dk

)
: (30)

Physical properties X are obtained by FI in the quasimomentum space:

X =
∫

D[r̂(k)]X [r̂(k)]p[r̂(k)] ; (31)

where
∫
D[r̂(k)] denotes the FI [192]. With regard to the correlation function (29) one has

*((r(s) − r(0)) − R)

=
(

1
28

)3=2 ∫ ∞

−∞
exp
(

iw ·
[

1√
28

∫ ∞

−∞
r̂(k)(eiks − 1) dk − R

])
d3w (32)

and the tangent of the curve at contour position s reads u(s) = (
√

28)−1
∫∞
−∞ ik r̂(k) expiks dk. Using

standard methods [191,193], one obtains for the correlation function (29) for WLC from (30)

C(R; 0; s; 0) =
∫

D[r̂(k)]*((r(s) − r(0)) − R)pWLC ˙ exp(−R2=4#1) ; (33)

where #1 = l{s − &−1(1 − e−s&)}=6, &2 ≡ 3=(1l), and therefore (33) simpli2es to the expression
exp{−3R2=(2ls)} for ideal Gaussian chains. There is a variety of related correlation functions which
have been discussed [33]. For example, one may consider the adsorption on a surface where the
polymer has a 2xed orientation U0 at r(0). The orientation distribution function of the tangent U at
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position s becomes

C(U ; s) =
∫

D[r̂(k)]*(U(s) −U)pWLC[r̂(k)] ˙ exp[ − U 2=4#2] ; (34)

independent of s due to translational invariance.

5.1.2. Properties of WLCs, persistence length, radius of gyration
From (33) we calculate the average monomer–monomer distance (MMD) separated by the contour

distance s for WLC

〈R2〉(s) = l
(
s− 1

&
[1 − e−s&]

)
; 〈R4〉(s) =

5
3
l2
(
s− 1

&
[1 − e−s&]

)2

: (35)

Equations (35) are also obtained in [191,190] and di?erentiate from the average end-to-end distance
obtained in [183]: 〈R2〉(L) = l{L − (2&)−1 tanh(L&)}, which demonstrates the di?erence between
basic end-to-end and correlation functions through an end-e?ect. In order to patch up the di?er-
ence, an additional term describing the end e?ect has been added to the Hamiltonian in [190]. For
Gaussian chains, i.e., & → ∞, one recovers from (35): 〈R2〉= lL, and for the opposite limit of rod-
like chains, i.e., 1 → ∞, & − ¿∞ the WLC at 2rst glance give incorrect results and in order
to make the model valid, an additional condition of the average length of the chain being L
should be used, i.e., as discussed in detail by Freed [183], let

∫ L
0 ds̃ =

∫ L
0 〈(u(s) · u(s))1=2〉 ds = L,

where ds̃ is di?erential arc length. Then we will obtain constraint on the parameters, l and 1, by
Eq. (34) 〈u2〉=(

∫
u2 G(u;L)du)=(

∫
G(u;L) du)=6#2 =3l=(41)=1, being equivalent to l=41=3. For

example, if 1 is selected as the independent parameter l will depend on 1 and will have a meaning
of an e?ective monomer length Kuhn length!. Another reasonable constraint can be obtained from
〈|u|〉 = 1 which leads to l = 3821=16. A di?erent is derived by Freed [183] (l = 1=3 obtained from
the end to end tangent distribution function, and in Ref. [190]), l = (4=3)1 is derived by taking a
limit on Eq. (33). Substituting l = 41=3 into (35) we have 〈R2〉 = l{L − l(1 − e−2L=l)=2}, and l is
proportional to persistence length (see below). For 1 → ∞ we now properly obtain the result for a
rodlike polymer 〈R2〉 = L2.

The persistence length lp for 2nite contour length is obtained along the same line using the def-
inition: lp ≡ ∫ R cos#C(R; 0;U0; s; 0) d3R d3U0=(

∫
C(R; 0;U0; s; 0) d3R d3U0), i.e., lp = �1〈|U0|〉#−1

2
and therefore lp = [1 − exp(−s&)]=&, where & is given after Eq. (33), which is similar to the result
of Porod–Kratky [188]. For s → ∞ one has lp = &−1 = (2=3)1 = l=2. For the radius of gyration,
de2ned as R2

G = (1=2L2)
∫ L

0 ds
∫ L

0 ds′〈(R(s) − R(s′))2〉, we obtain, by making use of (35)

R2
G =

lL
6

− l2

4
+

l3

4L2

[
L− l

2
(1 − e−2L=l)

]
: (36)

For & → ∞ Eq. (36) becomes R2
G = lL=6, which is just the ideal Gaussian chain radius of gyration.

When & → 0, using l = 41=3 we have R2
G = &lL2=24 = L2=12 which is just the expected result for a

rodlike polymer. But there is notable peculiarity in the statistics when approaching the rodlike limit,
as will be seen from the scattering function.

5.1.3. Scattering functions
In order to compare the result for the WLC with the ones for ideal Gaussian chains and rod-

like chain, let us write down the corresponding isotropic scattering functions, for the Gaussian chain
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I(x) = N (2=x2)(x− 1 + e−x), where x ≡ k2R2
G, and for the rodlike polymer I(x) = L2(1=6x){2√3xSi

(2
√

3x) + cos(2
√

3x) − 1}, where Si(x) =
∫ x

0 (sin(t)=t) dt.
The scattering function for WLC is obtained from the Fourier transform of the correlation function

C(k;U ;U0;L) and gives I(k) = 2N=(L2)
∫ L

0 (L − s) exp{−k2l[s − (1 − exp(−s&)=&]=6} ds. If we let
1 → 0, we see that the Gaussian limit is reobtained. But if we let 1 → ∞, this does not lead to
the above I(x) for rodlike chains. For that reason, the demonstrated approach leads to a so-called
Gaussian rodlike polymer for 1 → ∞. Properties of the presented model have been also worked
out for the case of WLC in external 2elds [33]. Finally, we mention a di?erence between the
approaches discussed here and the one by Saito et al. [188]. We obtain 〈u(s) · u(s′)〉 ≈ 1 − a−1 ≈
exp(−2|s− s′|=3lp) for |s− s′|�lp and a−1=3 ≈ exp(−|s− s′|=lp) for |s− s′|�lp. which means, that
for two segments far from each other these two models are consistent.

For molecules whose intrinsic rigidity against twist is important to interpret results the statistics
to be presented for WLC had been extended to chiral ribbons [194].

5.2. FENE-C wormlike micelles

Aqueous surfactant solutions are known to form wormlike micelles under certain thermodynamic
conditions, characterized by surfactant concentration, salinity or temperature. In the semi-dilute so-
lution regime these linear and &exible particles, with persistence lengths varying from 15 to 150 nm
form an entangled viscoelastic network. In equilibrium their behavior is analogous to that of poly-
mer solutions and their properties obey the scaling laws predicted for the semi-dilute range [195].
See Ref. [196] for the prediction of more general surfactant microstructures (such as bilayers), their
shapes, and shape &uctuations. In contrast to ordinary polymers, wormlike micelles can break and re-
combine within a characteristic time (breaking time) and their length distribution is strongly a?ected
by &ow. Phenomena such as shear banding structures, the variety of phase transitions and thixotropy
are not completely understood [197]. This section contributes to this debate with a mesoscopic con-
cept. There is huge number of both macroscopic and microscopic models available which deals with
the prediction of the wormlike micellar phase, or a full phase diagram, changes in topology, etc. To
summarize these works is certainly outside the scope of this review (see, e.g. the book by Gelbart
et al. [29]). For a review on simulations of self-assembly see Ref. [30].

Wormlike micelles, with certain similarities to equilibrium polymers [198] can be modeled on a
mesoscopic scale which disregards amphiphilic molecules and their chemistry by a modi2ed ver-
sion of the FENE potential which allows for scissions and recombinations of worms, the so-called
‘FENE-C’(ut) for which the connector force between adjacent beads is parameterized by QC :
F (FENE-C)(r) = F (FENE)(r) for r6QC and F (FENE-C) = 0 for r¿QC with a rather irrelevant smooth
interpolation at QC [199–201]. FENE-C reduces to FENE for QC = Q0 and QC is trivially related
to the scission energy (energy barrier for scission). In this section we will analyze this model both
numerically (via NEMD) and analytically. The analytic model is based on an expression for the free
energy of Gaussian chains, modi2ed by a term which takes into account a 2nite scission energy in
order to describe micelles, and extended to &ow situations. In equilibrium, the length distribution
then depends on two parameters, namely the micellar concentration and the scission energy. The
shape of this distribution has a signi2cant in&uence on &ow alignment and the rheological behavior
of linear micelles. The analytic approach to be discussed 2rst exhibits similarities to the calcula-
tion of products in polymerization kinetics and to association theory [202,203,6]. Results will be



490 M. Kr�oger / Physics Reports 390 (2004) 453–551

compared with the exact numerical solution in Section 5.2.3. The example in the next section has
been chosen for illustrative purpose. Shear thickening rather than thinning occurs for a wide range
of micellar systems, cf. [204,205] which is also obtained via a modi2ed FENE-C which includes
bending sti?ness (FENE-CB models) and allows for the formation of networks.

5.2.1. Flow-induced orientation and degradation
Consider an ideal solution of linear chains (micelles) being modeled as bead–spring chains. We

assume that each bead can have two bonds and we exclude ring formation. We consider a total
number of Nb beads at (micellar) concentration c, where a bead represents a number of chemical
units as already discussed in this review. Let NM ≡ cNb denote the number of beads able to form
linear chains (‘M-beads’) and which can associate and dissociate, and NS ≡ (1−c)Nb the number of
solvent particles (‘S-beads’). The system is then characterized by the number ni of micellar chains
made of i beads and c. At equilibrium the distribution of chains results from the grand canonical
partition function J=

∑∞
n1=0 : : :

∑∞
nN=0(q1�1)n1(n1!)−1 : : : (qN�N )nN (nN !)−1 =

∏N
i=1 exp(qi�i), where qi

and 2i are the partition function and activity, respectively, of an i-chain (‘subsystem’ i), �i=exp(�2i),
and �=1=(kBT ). For the average number of i-chains one has 〈ni〉=�i9(lnJ)=9�i=�iqi. Let us require
that the various subsystems are in a chemical equilibrium with each other, i.e., 2i = i21. Thus, with
� ≡ �1, we have 〈ni〉=�iqi. For an i-chain the Hamiltonian H is formulated in terms of momentum
and space coordinate of the center of mass, pc and rc, respectively, and i− 1 internal momenta and
coordinates Pk ;Qk with (k=1; : : : ; i−1). We choose the internal coordinates such that Qk denotes the
kth bond vector between beads k and k + 1. Carrying out the integration over momenta (Maxwell
distribution) and coordinates yields

∫
exp(−�H) dpc dPi−1 drc dQi−1 = (28mkBT )3i=2Vqint

i , where
m is the mass of a single bead and V is the total volume of the solution, qint

i denotes the internal
con2gurational integral, and we can write qi=Vqint

i :−3i, with the thermal de Broglie wavelength of a
bead :. In order to simplify the structure of the following equations we equal the masses of M- and
S-beads. For the calculation of the con2gurational integral we introduce a con2gurational distribution
function  . The con2gurational integral is related to the free energy via qint

i = exp(−�Aint
i ); with

Aint
i =

∫
dQi−1  i(kBT ln  i + Ui), where Ui denotes the internal energy of an i-chain.

In order to keep this example simple, we assume Gaussian distributions, i.e.

 i(Q[i−1]) =
1

(28)3(i−1)=2

1
|C−1

i−1|1=2
× exp

(
−1

2
Q[i−1] · CT

i−1 ·Q[i−1]

)
; (37)

with Q[i−1] ≡ (Q1;Q2; : : : ;Qi−1). The 3(i−1)×3(i−1) matrix of covariances is given by C−1
i−1=〈Bi〉

with (Bi)23 ≡ Q2Q3 (2; 3 = 1; : : : ; i − 1) and | · · · | denoting a determinant. The tensor Bi becomes
anisotropic under &ow conditions. In the ‘slow reaction limit’ in which changes in micellar size
occur on a time scale long compared to orientational di?usion of the segments in presence of &ow,
one can assert that the deformation energy can be added to the micellar free energy [206]. The
internal energy of i-chains is then given by

U = −(i − 1)Esc +
1
2

i−1∑
j=1

H 〈Q2
j 〉 ; (38)

where Esc is the scission energy, i.e. Esc is the energy required to break a chain (independent of its
length, for a more general case see [207]). For the moment we consider in (38) the FENE-regime
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where bond stretching is not relevant which is especially reasonable for FENE-C chains for which
QC is considerably smaller than Q0. Inserting Eqs. (37) and (38) into the above integral expression
for the free energy and performing the integration yields

Aint
i = −3

2
(i − 1)kBT (1 + ln(28)) − 1

2
kBT ln|〈Bi〉| − (i − 1)Esc +

H
2

i−1∑
j=1

〈Q2
j 〉 (39)

and, as such, is similar to an expression given by Booij [208]. Note that the last term on the rhs is
proportional to the trace of the pressure tensor for an i-chain within the Rouse model, H

∑i−1
j=1〈Q2

j 〉=
VTr(Pi). Strict usage of the above relationships leads to

〈ni〉 = V
(

�
:3

)i
(28)3(i−1)=2|〈Bi〉|1=2 × exp

(
(i − 1)

(
�Esc +

3
2

)
− �

V
2

Tr(Pi)
)

: (40)

This expression provides a basis to analyze the length distribution for both equilibrium and nonequi-
librium states. One can evaluate (40) in equilibrium by making use of expressions resulting from
the Rouse model [6,209–211]. The number of i-chains is then given by 〈ni〉0 =V (�=:3)izi−1, where

z ≡ (28)3=2|〈QQ〉0|1=2 exp(�Esc) =
(

28a2

3

)3=2

exp(�Esc) ; (41)

inherits the scission energy and represents an apparent volume of a bead. For the number density
of micellar i-chains �i ≡ 〈ni〉0=V we arrive at �i = �i

1z
i−1. Through the constraint of conserved total

density of beads �=Nb=V the density �1 of 1-chains can be expressed in terms of the concentration
c and z in (41) by using rules for geometric series as

�c ≡
N∑
i=1

i�i = �1={(1 − �1z)2} : (42)

5.2.2. Length distribution
The length distribution in equilibrium is thus determined by the scission energy and concentra-

tion and may also be rewritten in exponential form, 〈ni〉0=〈ni−1〉0 = �i=�i−1 = �1z. The normalized
equilibrium distribution function C0(L) of L-chains is then equivalent to the expression derived by
Cates [212] and reads

C0(L) =
1

〈L〉0 exp
(
− L
〈L〉0

)
: (43)

From �i = �i
1z

i−1 we obtain the average equilibrium length (number of beads) of the micelles
〈L〉0 ≡ ∑N

i=1 i�i=(
∑N

i=1 �i) = (1 − �1z)−1. Solving for �1 leads to the relation 〈L〉20 − 〈L〉0 = z�c,
which—itself—is solved (for positive lengths L) by

〈L〉0 =
1
2

+
(

1
4

+ z�c
)1=2

: (44)

For a simple &uid which is, within this framework, modeled by an in2nitely large negative scission
energy (FENE limit) we obtain the correct result 〈L〉0=1 which we call a generalization of the square
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root dependence obtained earlier. The generalization is important in reproducing the results from the
microscopic model as well as to describe experimental results, for which at low concentrations the
dependence of the micellar length on concentration seems to be quite weak.

For the case of FENE-C chains with Qc close to Q0 expressions become slightly more complicated,
cf. [32]. More precisely, the ratio �i=�i−1 increases weakly with i and therefore the length distribution
C0(L) decreases weaker than exponentially with L. The concentration dependence of the average
micellar length 〈L〉0 is more pronounced than the square root behavior given in (22). The formalism
presented also allows, for FENE-C chains, to calculate the variation of the length distribution with
the &ow rate, but the treatment becomes considerably more lengthy due to correlations between the
bond vectors and the dependence of the pressure tensor on &ow parameters.

Results presented in the 2gures have been obtained numerically using the above ‘algorithm’
(an extended version can be found in [32]). The second moment 〈QQ〉 becomes anisotropic, the
covariance matrix |〈Bi〉| represents the shear induced orientation of segments. The concentration c is
obtained numerically by the summation in (20). Varying the shear rate a maximum in the distribu-
tion of micellar lengths C(L) occurs, which shifts to shorter chain length with increasing shear rate.
Additionally the distribution becomes less broad with increasing rate. The &ow alignment angle � is
expressed through the viscosities (assuming validity of the SOR) by �=8=4+ tan−1[!̇%1=(2$)]. We
evaluate the material quantities such as the shear viscosity $ from expressions involving |〈Bi〉|=|〈Bi〉0|
and �1(!̇) [32]. It turns out that even for high scission energies the alignment angle does not decrease
with increasing shear rate towards zero, because, in opposite to ‘classical’ polymers, here the average
length of chains decreases implying a &ow alignment angle which is just moderately decreasing.

A simpli2ed approach to the analytic treatment of the FENE-C model subjected to &ow may
neglect the variation of the determinant of the covariance matrix with the shear rate, as done in
[6,208] for (classical=nonbreakable) polymers, The approximation is justi2ed by the fact that the
determinant is of the order of !̇1=2 which is small compared with the exponential of the trace of
the pressure tensor. From the approximation follows an increase of the scalar pressure p= Tr(Pi)=3
with shear rate !̇, i.e. 9p=9!̇¿ 0 which in&uences the given result (40) as if one would decrease
the scission energy (see Eqs. (39), (40)). A decrease of that energy is connected with a decrease
of the average length according to (41), (44) and hence with a decrease of the viscosity [6].

5.2.3. FENE-C theory vs simulation, rheology, Dow alignment
Let us now compare the predictions of the nonsimpli2ed analytic model described in the foregoing

sections with NEMD simulation results for the full FENE-C model (temperature is kept constant at
kBT=j = 1, cuto? radius of the FENE-C potential chosen as R0 = 1:13) implying Esc = 8:09, bead
number density n = 0:84). Results can be compared without any remaining adjustable parameter,
see Figs. 18–20. As can be seen clearly from Fig. 19 only the dependence of average length 〈L〉
divided by Esc (representation motivated by Eq. (44)) on concentration is not in ideal agreement,
but a tendency to a small slope at low concentrations is obvious. The slope at high concentrations is
around 0:8 for the systems studied here. All other—nonequilibrium–quantities shown in Figs. 21–24
are described well.

Through (40) a phase separation between the short chain and long chain systems can be expected
if the sign of 9p=9!̇ depends on the length of chains as it has been detected for the microscopic
FENE chain melt in [19]. Various hints for such a phase separation exist, e.g., under shear, a shear
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Fig. 18. MD results for average micellar length 〈L〉0 vs the scission energy �Esc for FENE-C micellar solutions
(from 4% to 100%) in equilibrium. Lines: the mesoscopic result Eq. (44), The 2t is parameter-free.

-5 -4 -3 -2 -1 0
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

ln
L

 -
E

sc
/

2k
BT

ln c

0

4

2

6

10

8

Esc/kBT =

theory

MD (RC = 1.13)

Fig. 19. MD results for the average micellar length 〈L〉0 (reduced form) vs concentration c as compared with the meso-
scopic result (Eq. (44)). The expression of Cates [212] predicts a constant slope in this representation.

banding structure has been observed by one of us [213]. Theoretical studies on the latter phenomenon
have been already performed [214–216].

5.3. FENE-B semiDexible chains, actin =laments

Polymerized actin (F-actin) plays an essential role in cell mechanics and cell mobility, and is an at-
tractive model for studying the fundamental physical properties of semi&exible polymers. Monomeric
actin (G-actin, relative molecular mass Mr = 42; 000) polymerizes in physiological salt solutions
(pH 7.5, 2 mM MgCl2, 150 mM KCl) to double-stranded 2laments (F-actin). The F-actin solutions
usually exhibit a polydisperse length distribution of 4–70 �m with a mean length of 22 �m. F-actin
2laments have been extensively studied by Sackmann et al. Details about its physics and biological
function can be obtained from [217,218], its role as model polymer for semi&exible chains in di-
lute, semidilute, liquid crystalline solutions [219] and also gels [220] has been recently discussed.
Bio-molecular dynamics simulations have been also reviewed by Berendsen [221].
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Fig. 20. MD results for the normalized equilibrium distribution of micellar length C0(L) for three samples at di?erent
concentrations c. Lines: the mesoscopic result (43) with same parameters as for the microscopic model.
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Fig. 21. Both NEMD and mesoscopic results for the non-Newtonian shear viscosity $, the viscometric function %1 vs the
dimensionless shear rate #. All quantities are given in Lennard-Jones (LJ) units.

Our goal is to demonstrate, that the simple FENE-B model de2ned through its intramolecular
bending (47) and FENE (1) potential (with RC = R0 in order to prevent chain breaking) plus the
WCA potential for interactions between all beads allows for a rather eMcient study of semi&exible
model actin 2laments at arbitrary concentrations and subjected to external 2elds on a coarse-grained
level, i.e. in particular simple compared with dynamic rigid-rod models and atomistic MD. This is
so since it is impossible to keep constraints exactly within a numerical approach, and approximative
methods are ‘expensive’. Moreover, even actin 2laments are stretchable, and conformations of FENE
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Fig. 23. Both NEMD and mesoscopic results for the length distribution C(L) under shear (the shear rate is given in
LJ units, the distribution function is normalized to unity and shifted for reasons of clarity).

chains share a fractal dimension df = 1 with nonstretchable (line) models. Gaussian chains and
random walk conformation, in the opposite, are inappropriate models for actin since they belong to
a class of fractal dimension df = 2.

If the model is restricted to the formation of linear molecules, the model serves to study linear
actin 2laments, if this restriction is released, we are going to model semi&exible networks. Notice
also similarities with the case of &exible (linear and branched) micelles, for which FENE-C and
FENE-CB models are used in the study of linear and branched micelles, respectively. For reviews
discussing the relevant aspects in the formation of &exible and sti? networks and their mechanical
properties we refer to Refs. [222–224,219]. Semi&exible block copolymers have been studied for a
FENE model in [225].

Actin 2laments can be regarded as classical wormlike chains which are shorter or comparable
in length with their persistence length. Further to Section 5.1 we mention the result for the radial
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Fig. 24. Both NEMD and mesoscopic results for the &ow alignment angle � vs shear rate (LJ units).

distribution function C(Ree;L) of the end-to-end vector [226,33] in the extreme limit of relatively
sti? 2laments: C(Ree;L) ≈ ‘p(AL2)−1f(‘p{1−‖Ree‖=L}=L), with f(x)=(8=2)exp(−82x) for x¿ 0:2,
and f(x) = (1=x − 2)(883=2x3=2)−1 exp(−1=4x) for x6 0:2. and a normalization factor A close to 1
according to [226]. The result is valid for L6 2‘p; x6 0:5 and (space dimension) d = 3.

For actin 2laments, concentration c is usually given in units of mass per volume, whereas the-
oretical and simulation studies prefer to deal with concentrations c̃ in units of length per volume.
The relevant regime is c ≈ 1 mg=ml. Since for the weight of actin one has 370 × 43 kD=�m =
2:64 × 10−11 �g=�m, a solution with the desired concentration c contains 3:8 × 1010 �m=ml =
38 �m=�m3, i.e., we are interested in systems with c̃ ≈ 10–100 �m=�m3. For simplicity, consid-
ering a cubic (equidistant) lattice with lattice spacing 'l we have: 'l =

√
3=c̃ ≈ √

0:1 ≈ 0:3 �m. A
minimum estimate for the length of a segment of the multibead FENE-B chain a should be 'l ≈ 5a,
and the segment (or bead number) concentration n to be used in the simulation of FENE-B 2laments
is n = c̃=a ≈ 5c̃='l = 5c̃3=2=

√
3. Concerning the system size, if we need to study a realistic regime,

where the length L of 2laments is L ≈ 5 �m, and the box size is twice the contour length, the
total number of beads is 40L3c̃3=2=

√
3. For the desired concentration of about 1 mg=ml, we arrive

at a large number. The system should contain 8 × 125 × 5 × 135 ≈ 7 × 105 beads. The situation is
better—from the viewpoint of number of particles—for a minimum (still relevant) concentration of
0:1 mg=ml, for which 20,000 beads are suMcient.

Restrictions for the chain dynamics within an entangled polymer solution can be demonstrated
by comparing the transient contours of a free actin 2lament with the ones of an actin 2lament
embedded in semidilute solution. A decrease of the amplitudes for the thermally excited undulations is
measured for the embedded 2lament, see Fig. 25 for an animation of our NEMD computer simulation
result. The restricted chain motion can be understood in terms of the undulations of a 2lament in a
tube formed by the surrounding entangled 2laments, and allows to determine its local diameter by
measuring the maximum &icker amplitudes: Let yi denote the local axes of the tube at the two ends
(i=1; 2). The reptation di?usion coeMcient along the tube, D‖, according to [218], can be determined
by evaluating the random 2ngering motion of the chain ends. If the chain end positions (xi; yi), with
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Fig. 25. Transient contours of a single FENE-B actin 2lament with 100 beads embedded in a semidilute solution.

respect to a local coordinate system with y-axes parallel to the tube axes at the ends are recorded
at 2xed time intervals �t, D‖ is determined as the arithmetic mean of the di?usion coeMcients

parallel to the tube at both ends according to D‖ = (A � t)−1 ∑Nsteps

i=2 (yi
1 − yi−1

1 )2 + (yi
2 − yi−1

2 )2,
where A ≡ 4(Nsteps − 1), and Nsteps is the number of steps. In Ref. [218], projections of the 2lament
contour to a plane (x − y) were analyzed from experiment.

In order to extract the corresponding reptation di?usion coeMcient from the bead trajectories of
the FENE-B model, embedded in 3D space, one has to precise the above de2nition, i.e., we hereby
de2ne the orientation of a tube on the basis of the temporary end-to-end vector of the semi&exible
chain: Ree(T ) ≡ T−1

∫ T
0 [rN (t) − r1(t)] dt, which depends on the chosen time interval T . Let nT

denote the normalized quantity nT ≡ Ree(T )=‖Ree(T )‖, then the di?usion coeMcient of a single
bead parallel to ‘its’ tube is Dk

T ≡ (2T )−1〈(nT · [rk(T ) − rk(0)])2〉, where 〈: : :〉 represents a time
average. The reptation di?usion coeMcient along the tube of the polymer with N beads is then
expressed as D‖ ≡ (D1

T +DN
T )=2. For rods the expected result is D‖ = kBT ln(L=b)=(28$sL), where L

is the contour length, b the diameter of the 2lament, kB is Boltzmann constant, T is the temperature
and $s is the viscosity of the solvent. In addition, we need to have a formula to extract the orientation
di?usion coeMcient Dor: and a tube width a, based on the time evolution of the end bead coordinates
of the semi&exible chain. The concept has physical meaning for semi&exible or sti? chains, but is
obviously meaningless for ideal chains. Now, let r1(t) and rN (t) denote the coordinates of the end
beads of a representative chain, separated by Ree ≡ rN (t)− r1(t). The natural choice for a de2nition
of the orientational di?usion coeMcient is Dor(T ) ≡ (4T )−1(nT − n0)2, to be extracted in a range
where Dor�1=T . In this range, Dor(T ) should be independent of T . For rods the theoretical result
is Dor = 3kBT (ln(L=b) − !)=(8$sL3), where ! ≈ 0:8, but slightly dependent on L=b [209]. Finally,
based on the trajectories of all the three beads we estimate a perpendicular di?usion coeMcient as
follows

D⊥(T ) ≡ 1
2T

∫ T

0

(
Ree(T )
‖Ree(T )‖ × drC(t)

dt

)2

dt : (45)
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Fig. 26. Equilibrium high density semi&exible FENE-B chains (48) for system parameters given in the 2gure.

For rods, the theoretical result is D⊥=D‖=2, and the so-called ‘disentanglement time’ can be related
to D‖ through �d = L2=D‖, a ‘tube radius’ a can be de2ned by a2 ≡ L2Dor�d = L4Dor=D‖, and the
center of mass di?usion is obtained via Dcm = (D‖ + 2D⊥)=3. Experimentally, thermal undulations
of the 2lament (visible by microscopy) have been used to de2ne the tube diameter; it is estimated
as the maximum de&ection along the contour, at suMciently large concentrations, within a limited
time interval.

Figs. 26, 27 provide snapshots of FENE-B model actin 2laments in equilibrium as well as in a
nonequilibrium situation. Our preliminary results (which should be improved in the near future) for
the reptation and orientational di?usion coeMcients de2ned in the previous section are summarized
in Table 4. The e?ect of concentration on the end-to-end distribution function of FENE-B actin
2laments is demonstrated by Fig. 28, for the di?usion coeMcient D‖ vs chain length see Fig. 29.
A solutions of actin 2laments exhibits pronounced shear thinning, non-Newtonian rheological behav-
ior of the FENE-B model is reported in Fig. 30. The simulation of dilute and semidilute solutions of
actin 2laments remains a challenge for computer simulation due to the sti?ness of 2laments which
requires large samples in order to prevent 2nite size e?ects.

To give an impression for possible further applications of the presented FENE-C and FENE-CB
models, we end up this section with few snapshots. Figs. 31, 32 show FENE-CB3 networks with
di?erent rigidities, whereas Fig. 33 has been obtained for an extended version of the FENE-CB∞
model, for which the bending potential (47) has been modi2ed such that in-plane scissions between
more than three beads (at branching points) are preferred (see Table 1 conc. nomenclature).

The incorporation of f-branching into the FENE-C model, which carries a single scission energy
Esc (since f = 1 in its simplest form) generally introduces f independent parameters characterizing
scissions and recombinations.
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Fig. 27. Flow-aligned FENE-B chains for system parameters given in the 2gure.

Table 4
Preliminary simulation result for the scaling behavior of various di?usion coeMcients (see text part) for semidilute solutions
of the FENE-B model actin 2laments

Dmon Dor D‖ D⊥

˙ c−& with &= 0.6(1) 0.7(2) 0.5(1) 0.6(1)
˙ 1−� with �= 0.3(1) 0.3(2) 0.3(1) 0.3(1)
˙ L−! with != 0.5(4) 2.1(2) 0.5(5) 0.3(2)

The scaling exponents have been estimated in the concentration regime (5–60%), relative bending rigidities 1=L=0:5–2.

5.4. FENE-B liquid crystalline polymers

Thermotropic liquid crystals form mesophases intermediate between a solid phase at low tempera-
tures and an isotropic liquid phase at high temperatures [227–229]. Nematic liquid crystals possess an
orientational order of the molecular axes but no long range positional order. Smectic liquid crystals, in
particular those referred to as SmA and SmC have a nematic like orientational order and in addition
their centers of mass are con2ned to layers. Previous computational studies on the phase behavior of
model liquid crystals by MD and Monte Carlo (MC) simulations have been performed on various lev-
els of simpli2cation of the molecular interactions [230,231,201]. Simulations of the Lebwohl–Lasher
lattice model [232,233] gave hints on the basic features of the phase transitions. The simplest ap-
proach where the dynamics of the centers of mass of the particles are properly taken into account



500 M. Kr�oger / Physics Reports 390 (2004) 453–551

0.80 0.85 0.90 0.95

R    / L

0.00

0.02

0.04

0.06

0.08

f(
R

   
 )

0.5 %
5 %

10 %ee

ee

1
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0.0 20.0 40.0 60.0 80.0 100.0
L

0.010

0.020

0.030

D
 ||

5 %
10 %
20 %
40 %

Fig. 29. Di?usion coeMcient parallel to the tubes vs chain length L for the FENE-B model actin 2laments at various
concentrations.

is to treat molecules as sti? non-spherical particles like ellipsoids or spherocylinders, or to consider
particles interacting by a Gay–Berne potential [234–236]. Going further the internal con2guration has
been taken into account by treating the molecules as being composed of interaction sites (monomers)
connected by formulating constraints or binding forces. Both Monte Carlo [237–240,201] and MD
methods [241–243] were applied to study the static and dynamic properties, respectively. Extremely
huge compounds such as lipids in the liquid crystalline phase have been simulated as well [244,245].
The e?ect of semi&exibility and sti?ness of macromolecules on the phase behavior of liquid crystals
has been extensively discussed on analytic grounds by Odijk and others [36,246]. However from a
physical point of view the construction of model interactions remains in question [247,248], and from
the technical point of view, the development of eMcient implementations [249–252] is challenging
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Fig. 30. Viscosity coeMcients and &ow alignment angle vs shear rate for both, 2% and 5% solutions of FENE-B actin
2laments (1 = 100; L = 100).

Fig. 31. Sample snapshot of a realization of a system made of FENE-CB6 chains (47). Beside scissions/recombinations
of chains (parameterized through a scission energy Esc) the model allows for the formation of branchings and carries a
parameter for the (in plane) sti?ness of chains. The concentration is c = 5%. Result obtained via BD.

due the complexity of detailed models which involve long range electrostatic forces or many body
potentials.

This section reviews a simple microscopic model for a ‘representative’ thermotropic liquid crystals
composed of partially sti?, partially &exible molecules. Our system is composed of intramolecularly
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Fig. 32. Same system as in Fig. 31 at concentration c = 20%. Result obtained via BD.

Fig. 33. Sample snapshot of a realization of a system made of semi&exible FENE-CB chains. Beside scis-
sions/recombinations of chains (parameterized through a scission energy Esc) the model potential naturally allows for
the formation of branchings and carries a parameter for the sti?ness of chains.

inhomogeneous FENE-B chains, interacting via a LJ potential, and the attractive part of the LJ
potential is taken into account only between their sti? parts. This model has been introduced in
[35]. The model system is composed of nc multibead chains with N beads per chain. Each chain,
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Fig. 34. The bead–bead interactions. In addition to the interactions indicated in this 2gure, there are also a FENE interaction
between all connected beads in chains and a repulsive Lennard-Jones between all beads of the system [35].

as shown in Fig. 34 is made of two identical terminal &exible parts (N&ex beads) and a central
sti? part (Nsti? beads) where Nsti? + 2 × N&ex = N . The notation (N&ex − Nsti? − N&ex) had been
used to characterize the di?erent systems. For example, (3 − 4 − 3) means that the chains in this
system are composed of a central sti? part of 4 beads and two terminal &exible parts of 3 beads.
Simulations are performed in the NVT ensemble. Results to be reported below were obtained for a
system of nc =288 chains of length N =10 at bead number density n=0:8. All beads are interacting
with a WCA potential. Adjacent (connected) beads within chains interact via a FENE force. The
central part of each chain is kept sti? with a strong (large 1) FENE-B interaction. Additionally,
corresponding beads within the sti? parts of di?erent chains interact via the attractive part of the LJ
potential (‘smectic’ biased) producing an e?ectively anisotropic interaction between sti? parts. The
strength of the attractive interaction is adjustable by a depth parameter jatt.

5.4.1. Static structure factor
The static structure factor of the multibead &uid where each bead is assumed to act as a ‘scatterer’

can be written as a product between inter- and intramolecular structure factors S(k)=Ssc(k)Sinter(k).
The single chain static structure factor representing the intramolecular correlations is de2ned as

Ssc(k) =
1

ncN

nc∑
&=1

〈∣∣∣∣∣
N∑

j=1

exp(ik · x(&)
j )

∣∣∣∣∣
2〉

: (46)

Here x(&)
j denotes position of bead j within chain &, k the wave vector transfer, and ncN the total

number of beads. The static structure factor S(k) is restricted to k = |k| = 28p=Lb (p integer, Lb

simulation box length). The single chain static structure Ssc(k) is not subject to this restriction for k
because it can be calculated from the unfolded chains, independent of the size of the basic simulation
box. A long range positional is revealed by Bragg like peaks in another static structure factor Scm(k)
where the centers of mass of the molecules are taken as scatterer. For ideal crystals the height of
the Bragg peaks approaches nc, the number of molecules in the scattering volume. For a layered
(smectic) structure with a separation distance d between layers a peak occurs at k =28=d. Its height
divided by nc provides a convenient measure for the degree of positional order ), i.e., we have
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Fig. 35. Single chain static structure factor Ssc as projected onto the x-plane (kx = 0) at di?erent temperatures: T = 0:74
(a), T = 1:00 (b), T = 0:80 (c), and T = 1:40 (d) for the 3–4–3 system. Adapted from Ref. [35].

Table 5
In&uence of the ratio between sti? and overall length of the special FENE-B molecules on their melting and clearing
temperatures [35]

n&ex − nsti? − n&ex 3–4–3 3–5–3 0–10–0

(nsti? − 1)=nb 0.34 0.40 1:00
Melting temperature 0.75 0.90 3:0
Clearing temperature 1.2 2.0 ¿5:0

) ≡ |〈n−1
c

∑nc
&=1 exp(2i8z(&)=d)〉|, where z(&) is a center of mass coordinate of chain & with respect

to a symmetry-adapted coordinate system, and 〈::〉 denotes a time average Fig. 35.
For a number of these semi&exible systems it had been observed that a smectic phase is well

de2ned over a wide range of temperatures whereas the nematic phase is too narrow in temperature
to be seen clearly. The smectic phase becomes increasingly disordered upon decreasing the strength
of attraction (parameter jatt). The e?ect of architecture (amount sti?/&exible) has been studied to a
certain extend in [35]. According to Table 5 clearing temperatures as well as melting temperatures
increase for this model upon increasing the length of the sti? part. This in qualitative agreement
with experiments. Some snapshots and results for order parameters are given in Figs. 36 and 37.

To our best knowledge, the nematic phase has not been studied via computer simulation for this
model as long as &exible parts are present. Of course, for sti? molecules [253], the nematic phase is
pronounced in a broad temperature regime in contradistinction to the smectic phase which appears
in a small temperature interval (Figs. 38 and 39). An expected phase diagram for the system is
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Fig. 36. Orientational order parameter S2 and positional order parameter ) vs. temperature for the 3–4–3 FENE-B system,
observed during heating (from an ideal fcc structure) and (subsequent) cooling [35].

T = 0.50 T = 0.85 T = 0.90 T = 1.00 T = 1.10 T = 1.40

X X X X X X

Z Z Z Z Z Z

Fig. 37. During heating: Snapshots of the sti? central parts of molecules at di?erent temperature T (increasing from left
to right). For the 2–4–3 FENE-B system [35].

shown in Fig. 40. A nematic phase should be favored for longer chains with N�10, and also for
nonsymmetric molecules.

5.5. FENE-CB transient semiDexible networks, ring formation

Both the analytic and numerical tools for linear wormlike micelles reviewed in the foregoing
sections can be used to predict the extent of loop formation as function of the micellar concentration,
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Fig. 38. During cooling (compare with Fig. 37). Snapshots of the sti? parts of the molecules in two orthogonal projections
3–4–3 FENE-B system [35].

the end-cap energy and the &exibility of linear micelles. As a matter of fact, even if loop formation
is unfavorable under many conditions, e.g., for sti? micelles and low end-cap energies, they have to
be treated correctly in any statistical approach to their behavior, since their presence can signi2cantly
a?ect the relaxation time spectrum, the rheological behavior and correlation function of various types.
Analytic considerations on the statistics of ring formation are available in Ref. [255].

We recall that the FENE-C (or FENE-C2) potential acts between all pairs of beads (whose
spatial distance is below a certain threshold value QC) as long as both beads have only one or two
interacting neighbors. Such a transient bond between connected beads de2nes the chain itself as well
as its contour and it breaks if any bond length exceeds the threshold value. In order to also account
for sti?ness (which disfavors, or better, prevents ring formation) the FENE-B (classical semi&exible
linear polymers) and FENE-CB model (including scission and recombination) are introduced as
follows:

U FENE-CB(r; #) = U FENE-C(r) + UB(#) ; (47)

UB(#) = 1(1 − cos#) ; (48)

where 1 is the bending coeMcient and # is the angle between connected bonds, such that # = 0
for a stretched chain. Note, that the bending potential is a three-body potential, whereas the FENE
potential is a two-body potential, and the notation in (47) is a formal one. According to Table 1
the FENE-Bn model is the natural extension of the FENE-B allowing for maximum functionality n
(classical saturated and unsaturated networks for small and large bending sti?ness, respectively). The
FENE-CB and FENE-B models have not yet been characterized in an exhaustive fashion. Flexible
FENE-n networks also known as ‘2nitely extensible network strand (FENS)’ [256] models have been
used to investigate strain hardening behavior for associating polymeric systems in [257], overshoot
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Fig. 39. The order parameters S2 (nematic) and ) (smectic) as function of jatt at the temperature T = 0:8 for the 3–4–3
FENE-B system [35].

1/L

Smectic

Nematic

Isotropic

T

Fig. 40. Typical experimental phase diagram where L is length of the chains and T denotes temperature [254].

in the shear stress growth function and strand extensibility in [258]. Remarkable progress has been
made in the understanding of polymer gels [259] where ‘equilibrium’ properties of a FENE-C type
network model were studied in detail via MC. The authors arti2cially prohibit association of direct
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neighbors but it seems that agreement between experiments and FENE model predictions can be fur-
ther improved by taking bending sti?ness into account (FENE-CB). At the same this article provides
an excellent review on continuum and molecular theories of stress–strain relations for networks (in-
cluding classical network theory, nonaMne deformation theory, scaling model, rod and coil model).
To get a feeling on the power of FENE-CB network models and their range of application we present
a tiny result obtained in a preliminary study. The model exhibits characteristic behaviors as those
shown in Figs. 41 and 42 when solving the FENE-CB model via BD. With increasing concentration
the probability of loop formation decreases resulting from the increase of average length of micelles.
With increasing scission energy loop formation becomes favorable, but increasing sti?ness decreases
the tendency of ring formation. At large concentrations and large values for the bending sti?ness
parameter 1 there are deviations from the square root behavior 〈n〉# ˙

√
c which are expected when

a mean-2eld approach is used to describe the e?ect of concentration. A snapshot is given in Fig. 43.

6. Primitive paths

Having discussed the range of applicability for various FENE chain models mostly listed in the
upper part of Table 1 one may expect that we also review the FENE models in the lower part of this
table. Fortunately, several reviews exist summarizing the constitutive equations following from the
approximations involved in the FENE-P.. and FENE-L. models, cf. [37,6,74] such there is no need
to summarize them—and there usefulness in micro–macro applications—here. Rather, we turn to
simple low dimensional models depicted in the upper part of Fig. 2, i.e. tube models and elongated
particle models for the description of complex &uids. One may ask how these levels of descriptions
are related. This will be discussed in Section 8.8.
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Fig. 43. Snapshot of a BD computer simulation con2guration of FENE-C wormlike micelles with parameters c = 0:02,
1 = 5 and E2 = 4. Here, a small system size, containing 1000 beads, was chosen for reasons of clarity.

6.1. Doi–Edwards tube model and its improvements

A molecular model for polymer melts was elaborated by Doi and Edwards (DE) [209] who
extended the reptation idea introduced by de Gennes [154] to a tube idea in order to describe the
viscoelastic behavior of entangled polymers in the presence of ‘obstacles’. Within the tube and



510 M. Kr�oger / Physics Reports 390 (2004) 453–551

reptation pictures, the complex entanglement interaction between polymer chains has been treated in
a rather direct approach, i.e. each chain in the polymer system is equivalent to a chain restricted to
one dimensional motion (so-called ‘reptation’) in a con2ning tube, except for its two ends which
can move in any possible direction. In addition to the reptation mechanism, DE originally assumed
instantaneous and complete chain retraction, aMne tube deformation by the &ow, and independent
alignment of tube segments. By doing so, they obtained a closed-form constitutive equation which
only involves the second moment of the orientation vector for a tube segment. For highly entan-
gled, linear polymers, the original DE model has been extended to incorporate chain contour length
&uctuations [260,261] and constraint release due to the motion of the surrounding chains (so-called
‘double reptation’) [262,263]. The combination of these two e?ects lead to a re2ned description of
the linear viscoelastic properties [264], however, the model is much less successful for the nonlin-
ear properties. The major experimental observations that the original DE theory fails to describe in
the nonlinear regime are the following [265,266]: (A) There exist irreversible e?ects in double-step
strain experiments with &ow reversal, (B) Over a wide range of shear rates !̇ above the inverse
disentanglement time 1=�d the steady shear stress is nearly constant for very highly entangled melts
or solutions or increases slowly with shear rate for less highly entangled ones. The 2rst normal
stress di?erence N1 increases more rapidly with shear rate than does the shear stress over the same
range of shear rates. The slope of N1 versus !̇ increases as the molecular weight decreases, (C) The
steady-state shear viscosity of di?erent molecular weights merge into a single curve in the high shear
rate, power-law regime, (D) The shear stress shows transient overshoots in the start-up of steady
shear &ow at low shear rates. The strain at which the maximum in the overshoot occurs increases
with shear rate at high rates, (E) The 2rst normal stress di?erence exhibits transient overshoots in the
start-up of steady shear &ow at moderate shear rates, (F) The rate of stress relaxation following ces-
sation of steady shear &ow is shear rate dependent, (G) The steady-state extinction angle decreases
more gradually with shear rate than predicted by the DE model, (H) The transient extinction angle
shows an undershoot at the start-up of steady shear at high shear rates; it also shows an immediate
undershoot when the shear rate is suddenly decreased after a steady state has been reached, 2nally
it reaches a higher steady-state value [267], (I) Steady-state values of the dimensionless uniaxial
extensional viscosity are non-monotonic functions of extension rate.

In order to improve the situation, many attempts of modifying the original DE model have been
made during the last years and been reviewed in [7]. Several physical e?ects have been found
to be important for more realistic modeling of nonlinear properties of entangled polymers. Upon
these the most important are avoiding the independent alignment (IA) approximation, double rep-
tation, chain stretching, convective constraint release (CCR), and anisotropic tube cross sections.
For a review on these e?ects, their in&uence on the quality of predictions for rheological quantities
a good reference might be Ref. [265]. Recently, reptation models incorporating all the well estab-
lished phenomena (except for anisotropic tube cross sections) have been formulated based on a
full-chain stochastic approach suitable for computer simulations [268–270,149]; on a full-chain, tem-
porary network model with sliplinks, chain-length &uctuations, chain connectivity and chain stretching
[271]; on coupled integral-di?erential equations [272]; and a reptation model including anisotropic
tube cross sections, chain stretching, double reptation, and CCR, while avoiding the IA approxi-
mation [273,265]. The predictive power of the Jacobi identity has been demonstrated for the latter
model which is thermodynamically admissible, i.e., compatible with the GENERIC framework
(Section 8.3). It is encouraging that these reptation models can quite successfully reproduce the
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experimentally observed rheological behavior in a large number of &ow situations. Very recently,
Doi merged together the network model of Green and Tobolsky, and the tube model of Edwards
and de Gennes. The resulting model, called the dual slip-link model, can be handled by computer
simulation, and it can predict the linear and nonlinear rheological behaviors of linear and star poly-
mers with arbitrary molecular weight distribution [274]. Uni2ed stress–strain models for polymers,
including polymer networks have been presented by Wagner [275,276]. Rather than going into fur-
ther detail with these models for polymer melts, and in order to go into detail with any of the
established models, we take an illustrative example from our own research, where the original tube
model is subject to a very minor modi2cation. This will allow us to discuss an analytic expression
for the dynamic viscosities, a decoupling approximation used to evaluate nonlinear elastic behaviors,
and Galerkin’s method to solve the underlying FP equation eMciently.

6.2. Re=ned tube model with anisotropic Dow-induced tube renewal

Point of departure are classical kinetic equations for the orientational distribution function of
polymer segments in melts. In the DE tube model the macromolecules of a polymeric liquid are
idealized as freely jointed primitive paths characterized by the orientation of a segment u at contour
label s (we use 06 s6 1). The orientation of the segment at the ‘position’ s is determined by the
orientational distribution function  =  (t; s; u) which, in general, also depends on the time. The
kinetic equation for  =  (t; s; u) is written as

9 
9t = −! · L − L · (T&ow ) + Drep( ) + Dor( ); T&ow ≡ 1

2
BL( uu : �) ; (49)

with angular operator L ≡ u×9=9u, vorticity ! ≡ (∇×C)=2 associated with the (macroscopic) &ow
2eld C, � ≡ (� + �†)=2 with � ≡ (∇C)†, and T&ow is the orienting torque exerted by the &ow. The
kinetic equation of Peterlin and Stuart [277] for solutions of rod-like particles (where the variable
s is not needed) is of the form (49) with Dor( ) ≡ wL2 , where w stands for the orientational
di?usion coeMcient. Often the corresponding relaxation time � ≡ (6w)−1 is used to discuss results.
The (reptation) di?usion term of DE can be written as Drep ≡ �−192=9s2 , with a relaxation time
� = L2=D, which is connected with a disentanglement time via �d = �8−2. The D-terms describe the
‘damping’, which guarantees that  approaches the isotropic distribution  0 = (48)−1 in the absence
of orienting torques. With an additional torque caused by a mean 2eld taken into account in (49),
such a kinetic equation will be applied below to the &ow alignment of liquid crystals [81]. Here we
consider both di?usion mechanisms. For the case of rodlike segments (B = 1) the FP equation (49)
is equivalent with the di?usion equation in [6,278].

With the normalization
∫
 d2u = 1 for the orientational distribution function  =  (t; s; u)

(time t) the average 〈 〉 of a function % =%(u) is given 〈%〉=
∫
% d2u and depends on t and s.

Here, the (2nd rank) alignment tensor (26) a= a(s; t) = 〈 uu 〉= 〈uu− I =3〉 is once more of partic-
ular importance. The symbol :: denotes the symmetric traceless part of a tensor, and I is the unit
tensor. Considering a planar Couette &ow in x-direction, gradient in y-direction, the shear rate !̇ for
the macroscopic velocity pro2le C is !̇ ≡ 9vx=9y. For this geometry, only 3 of the 5 independent
components of the alignment tensor do not vanish. In the spirit of Section 2.1 we abbreviate—for
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the present purpose—as follows:

a+ ≡ 〈uxuy〉; a− ≡ 1
2
〈u2

x − u2
y〉; a0 ≡ 3

4

〈
u2
z −

1
3

〉
; and ã ≡ (a+; a−; a0)T : (50)

A viscous &ow gives rise to a &ow alignment [277,279] which can be detected optically via its
ensuing birefringence. The alignment, in turn, a?ects the viscous &ow [279,280] and consequently the
stress tensor � contains a contribution associated with the alignment, more speci2cally, �=2$iso�+�a,
and �a = 3npkBTR

∫ 1
0 a(t; s) ds, where $iso is the ‘isotropic’ viscosity for a= ã= 0. np and T are the

molecule number density and the temperature of the liquid. The relation between �a and a (SOR,
discussed in Section 4.6) which has been derived by Giesekus [280] and used by DE is a limiting
expression for long and thin segments corresponding to B=1. In general the factor B is the ratio of
two transport coeMcients [279,81]. Curtiss and Bird [6] replaced 3B by 1 and presented additional
viscous contributions associated with the ‘link tension’. These terms are disregarded here.

6.2.1. Linear viscoelasticity of melts and concentrated solutions
Multiplication of (49) with uu and integration over the unit sphere yields(

9
9t + �−1 − �−1 92

9s2

)
a =

2
5
B� + · · · ; (51)

with � = (6w)−1. The dots stand for terms involving products of a with the vorticity ! and �, as
well a term which couples a with an alignment tensors of rank 4. These terms can be inferred from
[81], they are of importance for the non-Newtonian viscosity and the normal pressure di?erences
(see next section). For an analysis of the frequency dependence of the viscosity in the Newtonian
regime, these terms can be disregarded, i.e. we consider the only nonvanishing component a+ of a.

The complex viscosity $∗ =$′− i$′′ of a viscoelastic medium can be determined by measurements
under oscillatory shear &ow (or deformation) � ∼ e−i!t . The relaxation of the material causes a
phase-shift * between (complex) stress and deformation which is related to the complex viscosity
(tan * ≡ $′=$′′), or alternatively, to the storage G′ and loss modulus G′′ via G∗ = G′ + iG′′ ≡ i!$∗.
With the ansatz a=2B�C=5 the scalar function C(!; s) with dimension of time obeys (�−1− i!)C−
�−1(92=9s2)C = 1. The boundary condition proposed by DE are random orientations for the chain
ends, ∀t (s=0; u)=const. This implies ∀!C(!; s=0)=0. We wish to take into account the property
of chain ends to participate in the &ow alignment of the complete chain, or equivalently, anisotropic
(&ow-induced) tube-renewal. Working out this modi2cation, we set C(!; s = 0) = �end, in order to
introduce an additional relaxation time �end for this process. The solution reads

C(!; s) = �
[

1
z2 +

(
1
z2 − g

)(
tanh(z=2)
sinh−1(sz)

− cosh(sz)
)]

; z ≡
√

�−1�− i!� ; (52)

with g ≡ �end�−1 being a dimensionless ‘order’ parameter for the chain ends. From the above
relations alone we immediately obtain an analytic expression for the complex viscosity:

$∗(!) = Ga�
[

1
z2 +

(
g− 1

z2

)(
2 tanh(z=2)

z

)]
; (53)

with a shear modulus Ga = 3B2npkBT=5. A Maxwell model type expression is obtained if ���.
For polymer melts and highly concentrated solutions where the reorientational motion is strongly
hindered, one expects the opposite situation, viz. ���. The pure reptation model considered by DE
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Fig. 44. Shear moduli G′ and G′′ vs frequency ! for various values of the parameters g for anisotropic tube renewal.
Adapted from Ref. [278].

corresponds to �−1� → 0 and consequently z → y with y ≡ (−i!�)1=2 = (1− i)N1=2, and N ≡ !�=2.
In this case (53) reduces to $∗(!) = $DE[H ∗

DE(!) +H ∗
end(!)] with the DE viscosity $DE =Ga�=12 =

npkBT�=20, and dimensionless (complex) damping functions H ∗
DE =12y−2{1− 2y−1 tanh(y=2)}, and

H ∗
end =g 24y−1 tanh(y=2). The index ‘end’ labels a term, which vanishes for g=0 and represents the

in&uence of anisotropic tube renewal on the frequency behavior of the viscosity. Some of de2ciencies
of the DE model have been overcome by inclusion of anisotropic chain ends. By NEMD simulation
of a FENE melt in [278] we found strong support for implementing this modi2cation. Moreover, the
expected scalings �end ˙ $Rouse ˙ L and �˙ $DE ˙ L3:4 and therefore g ∼ L−2:4 (L is proportional
to the molecular weight) allow to predict—in good agreement with experiments—the e?ect of chain
length on the dynamics viscosities, and in particular on the width of the plateau regime.

In distinction to the DE theory (g=0), for high frequencies the presented modi2cation predicts one
region, where both moduli display the same characteristics, independent of g, and another (plateau)
region, where the storage modulus is nearly constant within a g-dependent frequency range. For a plot
of the dynamic viscosities see Fig. 44. Notice that the moduli tend to overlap with increasing values
for the shear frequency. The positive slope of G′ and G′′ at high frequencies ! follows here without
the recourse to ‘glassy relaxation modes’, as suggested by Ferry [165]. To complete the discussion
we mention the explicit result for the shear relaxation modulus G(t) ≡ ∫∞0 $′(!) cos(!t) d!. We
obtain G(t) = 8Ga

∑
&;odd((8&)

−2 + g)exp(−t=�&) with �& = �=(8&)2 = �d&−2, thus reducing to the
DE result for vanishing g. For short chains, i.e., large g one obtains an expression GR(t)—by the
way quite similar to the one of the Rouse model— which satis2es GR(t) = −g��−1 dG=dt. For a
comparison between predictions, Eq. (53), and experimental data see Figs. 45 and 46.

6.3. Nonlinear viscoelasticity, particular closure

Multiplication of (49) with uu and subsequent integration over the unit sphere, considering further
the equation of change for the fourth rank alignment tensor and neglecting the anisotropic alignment
tensor of rank 6, which is equivalent to a speci2c ‘decoupling approximation’, a closed equation of
change is obtained (compare with previous section):(

9
9t + �−1 − �−1 92

9s2

)
a =

2
5
B� +

6B
7
� · a + 2 !× a ; (54)
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where !× a ij = jikl!kalj = (jikl!kalj + jjkl!kali)=2 if rewritten in components (using Einstein
summation convention). In terms of the components ã of the alignment tensor (de2ned in Eq. (50))
we can rewrite Eq. (54) for stationary of time-dependent simple shear &ow as

D




a+

a−

a0




︸ ︷︷ ︸
≡ ã

=




& # P

−# & 0

J 0 &




︸ ︷︷ ︸
≡M

· ã +




−Q

0

0




︸ ︷︷ ︸
≡  

; with




P

J

Q


 ≡ B#




2=7

3=14

1=5


 ; (55)

i.e., Dã =M · ã + with the di?erential operator D, a matrix M and inhomogeneity (vector)  ,
dimensionless shear rate # = !̇�, ratio between reptation and orientational relaxation times &= �=�=
82�d=� and dimensionless coeMcients P;J;Q de2ned in (55). The solution is ã as function of s, t,
and !̇(t). Usually the rheological quantities can be expressed in terms of the integral

∫
ã(s; t) ds. An

example will be given below. A weighted average had been considered in [6].

6.3.1. Example: re=ned tube model, stationary shear Dow
For the re2ned tube model (with anisotropic tube renewal, both reptation and orientational damp-

ing, closure approximation, Eq. (54)) we need to solve the corresponding matrix equation with
D = 92=9s2. The analytic solution for ã()) can be immediately written down. The result is deter-
mined by the real part kR = {(

√
R + &2 − &)=2}1=2 and imaginary part kI =

√
R=(2kR) of a complex

wave vector. For the mean alignment (vector) ã ≡ ∫ 1
0 ã()) d) we obtain by performing a simple

integration an explicit result for the alignment in terms of shear rate, reptation and orientational
relaxation times, shape factor B, and parameterized tube renewal:


a+

a−

a0


=

Q
(R + &2)




&

#

−J


+

1√
R(R + &2)




√
R∩

√
R∪

#∪ −#∩
−J∪ J∩




·
(

kR kI

kI −kR

)
·


 sin

kR

2
cosh

kI

2

cos
kR

2
sinh

kI

2


 ; (56)

where all symbols except ∩;∪; V;\ being related to the parametric (tube renewal) boundary condi-
tions aend± ≡ a±(s = 0) were introduced in terms of dimensionless shear rate, shape factor B, and
ratio & just above. We have (∩;∪) ≡ (cos kR + cosh kI)−1 ((:;−V ); (V;:)) · (cos (kR=2) cosh (kI =2),
sin (kR=2) sinh (kI =2)). with : ≡ aend

+ − &Q=(R + &2) and V ≡ #−1
√
R(aend− − #Q=(R + &2)). As-

suming the SOR, the non-Newtonian shear viscosity $ is obtained from ã through $ = 2C−1!̇−1a+

with a stress-optic coeMcient C discussed earlier. The same applies to the normal stress di?erences
(captured by a−; a0).

6.3.2. Example: transient viscosities for rigid polymers
For this example we evaluate (54) without reptation (�−1 = 0) and the di?erential operator is

identi2ed to be D = −�9=9t (just formally, � drops out in the result). The analytic solution for the



M. Kr�oger / Physics Reports 390 (2004) 453–551 515

Fig. 45. Comparison between theory and experiment for the loss and storage moduli, Eq. (53). Experiments (symbols)
are for on a monodisperse polysterene melt (M! = 215; 000) [281]. The moduli are functions of shear rate reduced to
a reference temperature of T red = 160◦C by a factor aT . (a) The two upper solid lines (for G′ an G′′) pertain to the
theoretical parameters Ga = 1:7 ∗ 106 dynes cm−2, � = 260 s and �end = g� = 1 s. (b) The theoretical curves for g = 0
corresponding to the result of Doi and Edwards [209], Curtiss and Bird [6], de Gennes [195] are also shown. (c) The
calculation of Doi [260] takes into account &uctuations in the length of ‘primitive chain’. Adapted from Ref. [278].

Fig. 46. Comparison between theory (Eq. (53)) and experiment (symbols) for the loss and storage moduli vs frequency
for polysterene of molecular weight 267,000 dissolved in chlorinated diphenyl at the concentrations c shown (in g=cm3)
[19,282].

time-dependent alignment vector reads ã(t) = C · [ã(t0) + c] − c with C = exp{−M(t − t0)=�} and
c=M−1 ·&. The solution can be rewritten in terms of the eigensystem of M . For a case of isotropic
rods, B = 1 at time t0 = 0, the time evolution of ã(t) is plotted in Fig. 47.

6.3.3. Example: Doi–Edwards model as a special case
We should notice, that the analytic solution (56) for isotropic chain ends (aend± = 0) and without

orientational damping (�−1 = 0) provides an analytical approximation for the numerical result of the
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Fig. 47. A particular case of the presented analytical solution of Eq. (54) for the alignment tensor components a±(t) of
initial isotropically distributed rigid rods subjected to shear.

DE model [209,68]. Using (56) we arrive—for steady shear—at

a+ =
1
10

!̇�B
(

sinh x − sin x
cosh x + cos x

)
x−3; x ≡ 1√

2
(!̇�)1=2

(
1 − 3

49
B2

)1=4

; (57)

As can be seen from this expression, for low shear rates the shear alignment a+ increases linearly
with shear rate !̇, for high rates a+ ∼ !̇−1=2 in agreement with [209]. Using the SOR, $ ∼ a+!̇−1 is
the shear viscosity, and %1 ∼ −2a−!̇−2 and %2 ∼ (2a0+a−)!̇−2 are the viscometric functions [6]. In
the DE limit our approximate model yields %2 =%1 lim!̇→0 %2=%1 and lim!̇→0 %2=%1 =3B=14−1=2,
showing that %1 and %2 possess the same characteristic dependence on shear rate. The original DE
model considers rod-like segments, i.e. B = 1, for which recover the expected and famous result
%2=%1 = −2=7. If both the orientational di?usion constant and anisotropic tube renewal are taken
into account, di?erent power laws appear which can be used to classify the systems rheological
behavior [6,209,278]. A consistent procedure is still missing to calculate the tube renewal parameter
aend± . Fig. 48 suggests aend± =acenter± ˙ !̇.

6.4. Nonlinear viscoelasticity without closure, Galerkin’s principle

For the three examples just discussed we started from a closed, approximate equation of change
for the second rank alignment tensor, Eq. (54). We want to shortly summarize on how the underlying
FP equation (49) including the e?ect of anisotropic tube renewal had been solved to within given
precision in [283] using Galerkin’s principle [6]. The same methodology had been recently used
in [284] to improve on an eMcient realization of the micro–macro CONNFFESSIT [285] approach
for the case where a low-dimensional FP equation carrying the recommended ingredients (double
reptation, convective constraint release, etc., cf. Section 6.1) is available. There are several alternative
strategies. One of them is BD which we already used in the 2rst sections (see also Section 8.5), and
which should be the preferred method for solving non-trivial high dimensional FP equations [68].
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Fig. 48. A stationary, planar Couette &ow with shear !̇ has been applied to a FENE model polymer melt via NEMD. The
2nite alignment of the end segments of polymer chains relative to the alignment of the centers of chains is shown for
two components of the alignment tensor. Note that for a+ (being closely related to the shear viscosity) the alignment of
the chain ends is more pronounced than the alignment of the centers of chains at suMciently high shear rates. The e?ect
on the rheological quantities is important, and quanti2ed in this paragraph.

The idea is to solve the FP equation (49) by expanding  (u; )) in spherical harmonics  and
even Euler polynomials E [286]

 (M;I)(u; )) =
1∑

k=0

M∑
n=0

n∑
m=0

I∑
i=0

Ai
knm 

m
kn(u)E2i()) ; (58)

with  m
0n = Pm

n (cos S)cos�;  m
1n = Pm

n (sin S)sin�. Inserting the series  (M;I) into (49) and applying
Galerkin’s principle

∫
d�
∫

dS
∫

d) D̂[ (M;I)] p
lqEj sin S= 0, for l= 0::1, q= 0::M , p= 0::q, j = 0::I

leads to coupled linear equations for the coeMcients Ai
knm as function of the dimensionless ratio

& = �=(6�) and the dimensionless shear rate # = !̇�. These equations were derived in [283].
A 2nite bending of  at the chain ends (anisotropic tube renewal) is captured through a coeMcient

x ≡ 92=9)2
∫

 (u; )) d2u|)=0; )=1 = A2
000; (59)

while we allow the integral
∫
 (u; )) d2u to depend on ). The normalization for  reads

∑I
i=0 Ai

000

NE(i; 0)=1, with NE(i; f) ≡ ∫ 1
0 d) EiEf=&if((i+f+2)!)−1Bi+f+2, involving the Bernoulli numbers

B [286] and &if ≡ 4(−1)i(2i+f+2−1)i!f!. The coeMcients ∀n; iAi
10n are left undetermined in the ansatz

(58). Finally there is an equal number of (M=2 + 1)2(I=2 + 1) nontrivial equations and unknowns to
solve for given parameters #, & and x.

The rheological behavior is inferred from the moments (or weighted moments, cf. the parameter
j used by Bird et al. [6] for additional ‘viscous’ contributions) of  , and had been also discussed in
[283]. The e?ect of ratio of relaxation times & on the alignment tensor components a± (for a 2xed
value for x), together with the corresponding components of the viscous contribution proposed by
Bird et al. [6] and denoted as k± are shown in Fig. 49. A plateau (undershoot) in a+ appears with
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of chain ends.

decreasing &, and k± dominates at very high rates. The latter term can be actually used to predict
a wide range of power law behaviors for the shear viscosity vs rate by varying &. The in&uence
of the 2nite bending of  at the chain ends, i.e. x �= 0, on the alignment of segments is shown in
Fig. 50. Perhaps surprising is the result for the dependence of a+ on the contour position. At
vanishing shear rates the components a± of the symmetric traceless 2nd rank alignment tensor
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vanish. At high rates the component a+ at the ends is larger than a+ at the chain’s center, while
the component a− monotonously increases with rate—for all contour positions. The centers of the
chains are more aligned in direction of &ow (characterized by a−) than the outer parts. Since the
a+-component must rise and fall with shear rate and has a maximum at a certain characteristic shear
rate, the chain end will follow this behavior—just shifted to larger rates. These predictions are in
very good agreement with results from NEMD of polymer melts described in Sections 4 and 6,
and also illustrate why the e?ect of anisotropic tube renewal has an important e?ect on the shear
viscosity (which is connected with a+ but not with a−).

7. Elongated particles

In [287] we provided a statistical interpretation of the director theory of Ericksen and Leslie (EL)
[288–290] for nematic liquid crystals. Starting from a FP equation of the type (49) supplemented
by a mean-2eld plus external potential, and using an expression for the stress tensor derived for
structural theories of suspensions, we interpreted the EL viscosity coeMcients and molecular 2elds
in terms of the parameters characterizing a suspension, i.e., particle geometry, particle concentration,
degree of alignment, solvent viscosity, and the potential. It turned out that the theory of Kuzuu and
Doi [80] for concentrated suspensions of rod-like polymers, the aMne transformation model by Hess
and Baalss [291], the results by Hand [292] and Sin-Doo Lee [293], were contained as special cases.
In distinction to Kuzuu and Doi in [287] we also obtained an expression for the tumbling parameter
in terms of order parameters and particle shape, which had been con2rmed independently by Archer
and Larson [294]. Here, in order to review the highly coarse-grained models depicted at the top of
Fig. 2 we summarize the macroscopic framework developed by EL. We give an example on how
the microscopic quantities such as an anisotropic gyration tensor for polymeric chains, or the shape
of suspended ellipsoidal (colloidal) particles enter the anisotropic viscosities.

There are various approaches in the literature to modeling &uids with microstructure. For example,
equations for suspensions of rigid particles have been calculated by averaging the detailed motion
of the individual particles in a Newtonian &uid. In particular, the solution for the motion of a single
ellipsoid of revolution in a steady shear [60] can be used to determine the governing equations for the
slow &ow of a dilute suspension of non-interacting particles. For more concentrated systems, various
approximations to the particle motions have been used. This approach, based upon a detailed analysis
of the microstructure, has been called ‘structural’ by Hinch and Leal (HL) [61]. Alternatively,
‘phenomenological’ continuum theories for anisotropic &uids have been postulated. They tend to be
quite general, being based upon a small number of assumptions about invariance, perhaps the most
successful and well known example being the EL director theory for uniaxial nematic liquid crystals
[288,289]. Additionally, numerous models have been developed and discussed in terms of symmetric
second- and higher-order tensorial measures of the alignment [227,295–299,209,228,300].

Given these diverse methods of derivation and apparently diverse domains of application, one may
ask, however, if and how such diverse approaches may be interrelated. Several comparisons have
already been made. In particular, Hand [292] obtained the governing equations for dilute suspensions
of ellipsoids of revolution without rotary di?usion and subject to no potential (thus perfectly aligned),
showed that they could be modeled also by the simpler EL director theory for transversely isotropic
&uids [301], and calculated the corresponding viscosities in terms of the suspension parameters.
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Furthermore Marrucci [302], Semonov [303], and Kuzuu and Doi [80] related the EL theory to a
dynamical mean-2eld theory for concentrated suspensions of rigid rods and thereby calculated the
Leslie and Miesowicz viscosity coeMcients in terms of the suspension parameters.

7.1. Director theory

The traditional EL theory of anisotropic &uids [288,304] assumes that there is a unit vector
2eld n(x; t) (called the director) representing the average alignment at each point of the &uid. The
extension [290] also introduces a variable degree of alignment represented by the scalar 2eld S(x; t),
where −1=26 S6 1. The extended EL (also denoted by EL in the following) constitutive relation
for the hydrodynamic stress tensor � of an incompressible anisotropic &uid with velocity C is given
by the following expression linear in the nonequilibrium variables Ṡ ; �, and N :

� = (&1nn : � + �1Ṡ)nn + &2nN + &3Nn + &4 � + &5nn · � + &6� · nn ; (60)

where N ≡ ṅ−� ·n, � ≡ (�+�†)=2=�T, and � ≡ (�−�†)=2=−�T, with �=(∇C)†. In addition to
the usual balance of momentum, �Ċ=−∇xp+∇x ·�T, there are two additional equations governing
the microstructure: (i) a vector equation for the director n (here we neglect director inertia)

0 = n × (hn − !1N − !2� · n) ; (61)

or equivalently, 0 = (1− nn) · (hn − !1N − !2� · n), where hn is the vector molecular 2eld (which is
indeterminate to a scalar multiple of n); (ii) a scalar equation for the degree of alignment S (again
neglecting inertia)

0 = hS − �2 Ṡ − �3 nn : � ; (62)

where hS is the scalar molecular 2eld. The &i are commonly called Leslie viscosity coeMcients.
The �i were recently introduced in by Ericksen [290] for the case of variable degree of alignment.
Furthermore the coeMcients !i are related to the &i by !1 = &3 − &2, !2 = &6 − &5. There are also
two restrictions (Onsager relations) that follow from the existence of a dissipation potential: &2 +
&3 = &6 − &5 (Parodi’s relation [227]), and �1 = �3 (proposed by Ericksen). Dissipation arguments
lead to the following restrictions on the coeMcients [290]: &4¿ 0; !1¿ 0; �2¿ 0; &1 + 3&4=2 + &5 +
&6 − �2

1=�2¿ 0; 2&4 + &5 + &6 − !2
2=!1¿ 0. Particular micro-based realizations of the ‘macroscopic’

equations will be presented next.

7.2. Structural theories of suspensions

Consider a dilute suspension of neutrally buoyant, rigid ellipsoids of revolution dispersed in an
incompressible Newtonian &uid at thermal equilibrium. The governing equations can be determined
from Je?ery’s [60] solution for the motion of a single ellipsoid in a homogeneous shear &ow. In
terms of the notation of Brenner and Condi? [305], we have for the dynamic stress tensor

� = 220� + 520�〈A〉 − n
2
j · 〈L〉 + O(�2) ; (63)
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Fig. 51. E?ect of particle shape on the relevance of the stress contributions for suspensions of ellipsoids of revolution,
Eq. (63).

where A is the stresslet and L is the applied couple on each particle. They are given by

〈A〉 = C1� + C2(� · 〈uu〉 + 〈uu〉 · �) − C3� : 〈uuuu〉 + NDr
[〈u∇uU 〉 + 〈∇uUu〉

]
;

〈L〉 = −〈u ×∇u)V 〉 ; (64)

with the ‘Brownian potential’ U ≡ log  + V=kBT . Here, 20 is the Newtonian shear viscosity of the
solvent, � is the volume fraction of ellipsoids, n is the number density of ellipsoids, u is a unit
vector along the ellipsoid axis,  (u; t) is the orientation distribution function, 〈·〉 is the orientational
average, V is an arbitrary potential, Dr is the rotary di?usion coeMcient of a single ellipsoid, B ≡
(r2−1)=(r2+1) with the axis ratio r=a=b (length/width in the cross-section) of an uniaxial ellipsoid,
N and C:: (plotted in Fig. 51) are geometric coeMcients as function of particle shape given in [287].
The constitutive relation (63), (64) is derived assuming a homogeneous shear &ow. It can also be
expected to apply for inhomogeneous &ows [306]. There is also a convection–di?usion equation
(of the FP type) for the orientation distribution function  , which allows for the calculation of the
evolution of the moments of the alignment, i.e., Eq. (49) with an orienting torque due to external
2elds (&ow plus potential)

T = T&ow − Dr

kBT
LV : (65)

We will make use only of the equation for the rate of change of the second-moment of the alignment
〈uu〉. It follows directly from the FP equation:

9
9t 〈uu〉= 2B� : 〈uuuu〉 +� · 〈uu〉 − 〈uu〉 ·�+ B(� · 〈uu〉 + 〈uu〉 · �)

−Dr[〈u∇uU + ∇uUu〉] : (66)

Furthermore, we have the following relations between the coeMcients [305]: BckBT=1020�NDr; �=
nvp, where vp = 48ab2=3 is the volume of an ellipsoid. The correspondence between micro- and
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macroscopic equations will be presented for a special case in Section 7.2.2. A more general case
had been discussed in [287].

7.2.1. Semi-dilute suspensions of elongated particles
Batchelor [307] has calculated the e?ect of hydrodynamic interaction of parallel elongated particles

(without Brownian motion) in a pure steady straining motion (� = 0) on the bulk stress tensor.
For elongated particles of length a on which no external force or couple acts and taking up the
same preferred orientation, Batchelor gave the approximate relation for the stress tensor which can
be compared immediately to those of the EL theory with &1 = 48=(3V )

∑
(a=2)3=(log h=R0); &4 =

220; &2;3;5;6 = 0; S = 1, where n is the direction of the particle axes, the sum is over the particles in
the volume V , R0 is the e?ective radius of the cross-section of the particle, and h = (na)−1=2.

7.2.2. Concentrated suspensions of rod-like polymers
Doi [308] has presented a dynamical mean 2eld theory for concentrated solutions of rod-like

polymers. We follow here the version by Kuzuu and Doi [80]. Viscous contributions to the stress
tensor are generally assumed negligible, but we include the viscosity 20 of the solvent. The stress
tensor of this model formally equals expression (63) with C1 = C2 = C3 = 0 in (64). The potential
is composed of two contributions

V = Vm + Ve; Ve = −1
2
�a(H · u)2; Vm = −3

2
UmkBT 〈uu〉 : uu ; (67)

Ve denotes the contribution due to an induced dipole by an external 2eld H , �a being the anisotropic
susceptibility of a rod, and Vm denotes the mean-2eld contribution, Um being a constant re&ecting
the energy intensity of the mean 2eld. A similar equation was also presented by Hess [309].

7.3. Uniaxial Duids, micro-macro correspondence

It is common to classify the types of alignment according to the eigenvalues of the second moment
of the alignment:

〈uu〉 = A1ll + A2mm + (1 − A1 − A2)nn ; (68)

where l ;m, and n form a triad of orthogonal unit vectors. In the special case in which the distribution
of particles of the suspension in a given &ow is uniaxial, e.g.,  uni =  (|u · n|), n(x; t) denoting the
axis of symmetry, one obtains that A1 =A2. Traditionally, the parameter S2 ≡ 1−3A1 is used. In this
case, we have the following explicit relations for the second and fourth moments of the alignment
[85,80]:

〈uu〉 uni = S2 nn ⇔ 〈uu〉uni = S2nn +
1
3
(1 − S2)1 ; (69)

and (in cartesian coordinates) 〈uiujukul〉uni=S4ninjnknl+(S2−S4)(*ijnknl+*iknjnl+*kjninl+*ilnjnk+
*jlnink +*klninj)=7+(7−10S2+3S4)(*ij*kl+*ik*jl+*il*jk)=105, where S2 and S4 are scalar measures
of the degree of orientation related to Legendre polynomials: S2 = 〈P2(u · n)〉; S4 = 〈P4(u · n)〉.
They must satisfy − 1

2 6 S2; S46 1. In the case of perfect alignment S2 = S4 = 1, and in the case
of random alignment S2 = S4 = 0. Note that the odd moments vanish identically due to symmetry
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of the distribution function  . Similar relations hold for the higher moments, but we refrain from
writing them.

The uniaxial assumption is not valid for all &ows of the suspension. More generally, the alignment
will be biaxial, i.e., A1 �= A2. The biaxial case requires the use of multiple directors plus additional
biaxial scalar measures (see [310] and references cited herein). For this review we are however
concerned only with those &ows for which this assumption holds since we want to make a comparison
to the EL theory, which assumes uniaxial symmetry. In this case we need only a single unit vector
plus the set {S2i} of scalars to completely describe the alignment. Furthermore, note that each
even-order moment of the alignment introduces a new scalar measure of the alignment S2i. The
EL theory assumes that there is a closure relation so that all higher-order parameters can be expressed
as a function of S2. Such an assumption is consistent, for example, with a Gaussian distribution about
the symmetry axis n. However, it will not be necessary to specify any particular closure relation.

7.3.1. Application: concentrated suspensions of disks, spheres, rods
Comparing micro- (63) with macroscopic (60) stress tensors and also comparing the equation of

change for the alignment tensor (66) with (61) one obtains for the particular case of concentrated
suspensions of rod-like polymers, cf. Section 7.2.2, upon extending from rods (B = 1) to uniaxial
ellipsoids also including disks (B=−1) and spheres (B=0) the following microscopic interpretation
of the EL parameters [287], with � ≡ nkBT=(2Dr)

&1 = −2�B2S4 ;

&2 = −�B(1 + �−1)S2 ;

&3 = −�B(1 − �−1)S2 ;

&4 = 220 + 2B2

(
1
5

+
1
7
S2

)
− $

4
35

B2S4 ;

&5 =
3
7
�B2

(
S2 +

4
3
S4

)
+ �BS2 ;

&6 =
3
7
�B2

(
S2 +

4
3
S4

)
− $BS2 ;

�1 = −�B ;

�2 = 35�(21 + 15S2 − 36S4)−1 ;

�3 = �1 ;

!1 = &3 − &2 = 2�B�−1S2 ;

!2 = &3 + &2 = −2�BS2 ;

� ≡ −!2

!1
=

&3 − &2

&3 + &2
=

(14 + 5S2 + 16S4)B
35S2

; (70)
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where � is the ‘tumbling parameter’. Vector and scalar molecular 2elds are given by

n × hn = −n〈(u ×∇u)V 〉uni ;

hS = 35 nkBT 〈u∇uU 〉uni(24S4 − 10S2 − 14)−1 : (71)

One easily con2rms that Parodi’s relation and all other relationships known from the director
theory (summarized in Section 7.1) are in full agreement with our micro-based expressions (70).
Carlsson’s conjecture [311,312] on the signs of &2 and &3 provided that S2 is positive is also
con2rmed by (70).

7.3.2. Example: tumbling
One way to characterize materials is according to the behavior of the director in a steady shear

&ow. As discussed by Chandrasekhar [229] and de Gennes [227], |�|¡ 1 implies that the director
always tumbles in steady shear &ow, whereas |�|¿ 1 implies that the director has a steady solution.
The above expression for the tumbling parameter � (not provided by Kuzuu and Doi [80]) has been
con2rmed by Archer and Larson [294] who also took into account numerically the &ow-induced
biaxiality showing that there can be a modest but signi2cant e?ect on the coeMcient �. Predictions
(70) have been already compared with experiments [313–315], and extended to biaxial &uids [310].
A very similar expression for � (using S4 ˙ S2

2 ) had been derived early by Hess [81] for the
case of uniaxial symmetry based on a truncation approximation to the FP equation, obtaining !1 ˙
S2

2 (1 − c1S2
2 ), and !2 ˙ −B S2(1 + c2S2 − c3S2

2 ), where c1;2;3 are temperature dependent constants.
A typical relaxation time [316] for reorientations of the director is given by �=1=(!̇

√
�2 − 1), where

!̇ is the shear rate. Thus � is seen to be a function of the order parameters and the axis ratio.
Also the coeMcients &2 and &3 determine the type of &ow via �. For a negative product &2&3 (i.e.,

|�|¡ 1) there is no steady state solution in simple shearing, for positive &2&3 the molecules will be
aligned under shear &ow, with a &ow angle � given by cos 2� = �−1. In Fig. 52, we can see how
the sign of &2&3 varies with order parameter S2 and geometry B (using the closure relation [317]
S4=S2−S2(1−S2)3 where 3=3=5, again there is no qualitative di?erence in the choice of the exponent
3). According to (70), � → B when both S2; S4 → 1. Also � → ∞ when both S2; S4 → 0. Thus we
will always have tumbling in the case of suspensions of almost perfectly aligned (i.e., S2; S4 ≈ 1) rigid
ellipsoids of revolution but steady solutions for suspensions with small degree of alignment (S2; S4 ≈
0). The transition between the two regimes is given by |�|=1. Note that in the case of perfect align-
ment (i.e., S2=S4=1), (70) reduces to �=B and for ellipsoids of revolution we always have |B|¡ 1,
which is the classical result that a single ellipsoid of revolution tumbles in steady shear &ow [60,318].
Fig. 53 indicates the dependence of the tumbling of the director on the degrees of alignment S2 and
S4. These results are independent of the particular potential, thus apply also to mean-2eld theory.

The calculated viscosity coeMcients in (70) are subject to the restrictions given in Section 7.1.
From (70) it follows that �2¿ 0 if and only if S46 (5S2 + 7)=12, which excludes arbitrary pairs
of values for S2 and S4. The excluded region is shown in Fig. 53. The remaining inequalities are
automatically satis2ed when �2¿ 0.

7.3.3. Example: Miesowicz viscosities
It is common to measure the three Miesowicz viscosities $i; i = 1; 2; 3 de2ned as the ratio of the

yx-component of the stress tensor and the shear rate !̇. The label i=1; 2; 3 refers to the cases where
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shown in this section, some combinations of S2 and S4 are excluded on dissipation grounds [287].

the director n is parallel to the x-,y-, z-axis, respectively (cf. Fig. 54). An orienting (magnetic) 2eld
has to be strong enough to overcome the &ow induced orientation. A fourth coeMcient $4 with
n parallel to the bisector between the x- and y-axes is needed to characterize the shear viscosity
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Fig. 54. For the measurement of the Miesowicz viscosities $1;2;3 and the viscosity $4 the magnetization-induced by the
external magnetic 2eld has to point in &ow (1 = x), &ow gradient (2 = y), vorticity (3 = z) direction. The ellipsoids of
revolution considered within the FP approach in this review are characterized by a single shape factor −1¡B¡ 1 where
B¿ 0 and B¡ 0 for rodlike and dislike aggregates, respectively.

completely. Instead of $4, the Helfrich viscosity coeMcient $12 =4$4 −2($1 +$2) is used in addition
to the Miesowicz coeMcients. The ‘rotational’ viscosity !1 can be measured via the torque exerted
on a nematic liquid crystal in the presence of a rotating magnetic 2eld (Tsvetkov e?ect). The four
e?ective viscosities measurable in a &ow experiment, cf. Fig. 54, are related to the EL viscosity
coeMcients by $1 = (&4 + &6 + &3)=2; $2 = (&4 + &5 − &2)=2; $3 = &4=2; $12 = &1. Explicit expression for
these quantities are obtained by inserting the viscosity coeMcients from (70).

7.4. Uniaxial Duids: decoupling approximations

In this section we brie&y comment on the validity of closure schemes often used in the literature,
in particular the so-called Hinch and Leal (HL) closures. They have been used to close the in2nite
number of coupled equations of motion for alignment tensors, derived from the FP equation such
as (49). Here we wish to point out that for the case of uniaxial symmetry there is a single pos-
sible closure which requires the knowledge of a scalar function S4(S2) rather than a full tensorial
relationship, and we will show, that this closure is di?erent from the HL closures.

For systems composed of uniaxial-shaped particles with symmetry axis u, the tensorial second-
and fourth-order moments of the (non-anisotropic) alignment are denoted by a2 = 〈uu〉; a4 = 〈uuuu〉,
where 〈·〉 is an orientational average. As shown before in this review it is often convenient to use
alternative but equivalent tensorial measures that are symmetric in all indices and traceless when
contracted over any pair of indices. We denoted such alignment tensors with the ‘ ’ symbol. For
the second and fourth order moments a2 and a4 one explicitly has a2 = a2 − I =3, and

a4 = a4 − 6
7
{a2I}sym +

3
35

{I I}sym ; (72)

respectively, where {·}sym denotes a symmetrized expression de2ned by {X23Y1�}sym ≡ 6−1(X23Y1�+
X21Y3�+X2�Y1�+X31Y2�+X3�Y21+X1�Y23) for the dyadic product of symmetric tensors X and Y . At
this point the reader may convince himself that the rhs of (72) is symmetric and traceless by rewriting
these equations for nine components. Such an exercise helps interpreting the following (very simple)
equations eMciently. There are orthogonal unit vectors n, m, l such that a2 = �1n + �2mm + �3ll .
The �i are the principal values of a2, and the unit vectors n, m and l are the principal directions.
The �i are subject to the constraint Tr a 2 = 0, i.e.

∑
i �i = 1. Similar relations hold for alignment
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tensors of arbitrary orders. The symmetry of orientational distribution f which de2nes the moments
(alignment tensors) ai is directly re&ected by the number of distinct principal values. For example,
for the second-order moment a2, we have 1; 2 and 3 distinct principal value(s) for isotropic, uniaxial,
and biaxial symmetry, respectively. Let us summarize some trivial implications.

(i) Isotropic symmetry: �1;2;3 = 1=3; a2 = I =3; a 2 = 0; a4 = {II}sym=5; a4 = 0. Any closure relation
for a4 in terms of a2 which should at least be non-violated close to equilibrium (if isotropic) must
therefore ful2ll the relationship a4 = (9=5){a2a2}sym which is, in particular, incompatible with the
closure a4 = a2a2.

(ii) Uniaxial symmetry: Two of the principal values of the second-order alignment tensor are
equal (say �2 = �3). In this case we can write a2 = S2nn+ (1 − S2)I =3, a2 = S2 nn , with an order
parameter S2 ≡ (3�1 − 1)=2. The fourth-order moments are given by a4 = S4 nnnn , and

a4 = S4nnnn +
6
7
(S2 − S4){Inn}sym +

1
35

(7 − 10S2 + 3S4){II}sym : (73)

Here S2 and S4 are the uniaxial scalar order parameters. They are related to the particle orientations
by averages of Legendre polynomials: S2 = 〈P2(u · n)〉; S4 = 〈P4(u · n)〉, and range in value by
−1=26 S26 1;−3=86 S46 1. The principal direction n is called the uniaxial director. As for the
isotropic case, both anisotropic moments a 2 and a 4 are formally ‘simpler’ to handle than a2 and a4.

7.4.1. Decoupling with correct tensorial symmetry
Substitution of nn in terms of a2 and S2 into (73) yields

S2
2 a 4 = S4 a2 a2 : (74)

No assumption has been made other than uniaxial symmetry, so that this tensorial closure relationship
is exact for uniaxial and isotropic symmetry, but carries still unspeci2ed scalar order parameters
S2; S4. Obviously, there is not such a simple analog for the biaxial case.

Based on the above representations of the second- and fourth-order alignment tensors, we now
consider possible closure schemes for B : a4 with B an arbitrary symmetric and traceless tensor.
such a closure is needed, e.g. in (66) to derive a closed form nonlinear equation for the second
moment.

Two more commonly cited closures, motivated by HL [319], are the HL1 closure:

B : a4 =
1
5
(6a2 · B · a2 − B : a2a2 + 2I (a2 − a2 · a2) : B) ; (75)

and HL2 closure:

B : a4 =B : a2a2 + 2a2 · B · a2 − 2a2 · a2 : B
a2 : a2

a2 · a2

+exp
{

(2 − 6a2 : a2)
(1 − a2 : a2)

}[
52
315
B − 8

21
(B · a2 + a2 · B − 2

3
B : a2) I

]
: (76)

These are based on interpolation between weak and strong &ow limits in a Brownian suspension
of rods. For closure (74), which is exact for the case of uniaxial symmetry, and relies only on an
approximation between scalar quantities S4 and S2, we obtain by straightforward calculation, for the
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special case S4 = S2
2 , which ful2lls S4 = 0 ↔ S2 = 0 and S4 = 1 ↔ S2 = 1 and is the only consistent

one which is parameter-free: KS1 closure:

B : a4 =
1

105
{2B − 10(B · a2 + a2 · B) + 35B : a2a2 − 20(B · a2 · a2 + a2 · a2 · B)

+70a2 · B · a2 + 4Ba2 : a2 − 5I (a2 : B + 2 Tr[B · a2 · a2])} : (77)

All the above closures (HL1,HL2,KS1) correctly reduce to the expected 2B=15 and B : nnnn for
isotropic symmetry (a2 = I =3) and perfect uniaxial alignment (a2 = n), respectively. In order to
compare these closures one can plot the nonvanishing components of the quantity B : a4 vs the
amplitude A of B, where B has the following form B=A((2−a−2b; b; 0); (b; b−1; 0); (0; 0; a+b−1)).
For the (relevant) case that B represents a traceless velocity gradient, and the prefactor a &ow rate,
the choices a = 0; b = 1 and a = b = 0 characterize shear (A: shear rate) and uniaxial elongational
(A: elongation rate) &ow 2elds, respectively. As for the HLx closures, Tr(B : a4) = B : a2 holds
for (77). Any reasonable closure speci2ed by S4 in terms of S2 (for ‘conventional &uids’ with
positive order parameters) should at least satisfy 0¡S4 ¡S2. For example, the ansatz S4 = S2 − S2

(1 − S2)3 parameterized by 0¡3¡ 1 has been proposed in [317], the corresponding closures are
called KS3-closures, and contain the KS1 closure as a special case. The HLx closures, however,
allow to produce pairs S2; S4 which fall outside this regime. The closure (74), which is immediately
extended to higher order tensors, may be preferred if one wants to keep the exact tensorial symmetry
while performing a closure relationship between (only) two scalar quantities for a closure involving
a4 and, in general, n scalar functions for a closure involving a2n.

7.5. FerroDuids: dynamics and rheology

Ferro&uids containing spherical colloidal particles with a permanent ferromagnetic core have been
modeled by a system composed of ellipsoidal aggregates (transient chains) along the lines indicated
in the previous sections [320,100,321]. The stress tensor of this model equals expression (63).
The FP equation for the orientation distribution function is given by (49) with orienting torque
(65). The potential V2 for a magnetic moment ) = 2u in the local magnetic 2eld H is given by
−�V2 =�2H · u= h · u, with �=1=(kBT ). Hereby the dimensionless magnetic 2eld h=2H =kBT and
its amplitude h (Langevin parameter) are introduced. For spheres, B = 0, the FP equation reduces
to the kinetic equation for dilute ferro&uids developed in Ref. [322]. The equilibrium magnetization
directly obtained from the equilibrium distribution of the FP equation is Meq =n2〈u〉eq =n2L(h)h=h,
where L(x) ≡ coth(x)− 1=x is the Langevin function. This equilibrium magnetization is the classical
result for a system of noninteracting magnetic dipoles. The equation for the 2rst moment, i.e., the
magnetization, is derived from the FP equation ((49) with V = V2)

9t〈u〉 = !× 〈u〉 + B〈(I − uu)u〉:�− 1
�
〈u〉 +

1
2�

(I − 〈uu〉) · h : (78)

The one for the second is given in [100]. Using these equations of change, the explicit contribution
of the potential V2 to the full stress tensor can be eliminated. In particular, one obtains for the
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Fig. 55. The shaded background represents a measure for the (minor) relevance of biaxiality—obtained via NEBD—on
the prediction of the rotational viscosity !1 as function of dimensionless magnetic 2eld h and vorticity �!̇ [100]. Shading
ranges from white (uniaxial) to black. In the top left corner (data for �!̇ = 10; h = 1) we have a 1.2% relative deviation
between uniaxial and biaxial formulas for !1. The depicted regimes refer to analytical solutions of the FP equation. A:
weak magnetic 2eld, B: weak &ow 2eld, C: deterministic limit. The 2gure summarizes analytical as well as approximative
results for these regimes. Adapted from Ref. [320].

antisymmetric part of the stress tensor �a, upon inserting the following result:

h= �*−1 ·
(
9t〈u〉 − !× 〈u〉 − B[� · 〈u〉 − 〈uuu〉:�] + �−1〈u〉) ; (79)

where *−1 denotes the inverse of the matrix * ≡ (I−〈uu〉), an expression in terms of the moments
alone: �a = −!1(N × nn) − !2(� · nn) × nn with the viscosity coeMcients !1 ˙ (3S2

1 )=(2 + S2); !2 ˙
−B{3S1(3S1+2S3)}={5(2+S2)}, and a shape-dependent proportionality coeMcient [321]. By perform-
ing NEBD simulation [100] for this system it had been observed that the assumption of uniaxial
symmetry can be successfully applied in a wide regime of shear rates and magnetic 2elds, see
Fig. 55 for an schematic overview. This 2gures also summarizes (closure) relationships between
the order parameters for di?erent regimes. In Ref. [323] the stationary and oscillatory properties of
dilute ferromagnetic colloidal suspensions in plane Couette &ow were studied. Analytical expres-
sions for the o?-equilibrium magnetization and the shear viscosity are obtained within the so-called
e?ective 2eld approximation (EFA), and the predictions of a di?erent approximation based on the
linearized moment expansion (LME) were obtained. Direct NEBD simulation of the FP equation
were performed in order to test the range of validity of these approximations. It turns out that both
EFA and LME provide very good approximations to the stationary o?-equilibrium magnetization as
well as the stationary shear viscosity in case of weak Couette &ow if the magnetic 2eld is oriented
in gradient direction. If the magnetic 2eld is oriented in &ow direction, and for small amplitude
oscillatory Couette &ow, the LME should be favored. A sample result which estimates the quality
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Fig. 56. Stationary relative change Ryx of the shear viscosity for a dilute suspension of ferromagnetic particles, cf. Section
7.5, in plane Couette &ow as a function of the Langevin parameter h. The magnetic 2eld was oriented in &ow direction,
dimensionless shear rate !̇ = 0:1. Symbols represent the result of the NEBD simulation, full line correspond to the EFA,
dashed line to the LME approximation. The value of the axis ratio of the ellipsoid was chosen as r = 2(B = 3=5) for the
lower and r = 5(B = 12=13) for the upper curves. Adapted from Ref. [323].

Fig. 57. Sample MD snapshot for a simple ferro&uid with increasing (top left to bottom right) permanent magnetic
moment, where external orienting (&ow, magnetic) 2elds are absent. The 2gure serves to demonstrate, that ferro&uids
exhibit anisotropic viscosities even in the absence of a magnetic 2eld (due to chain formation), and that they can be
modeled with a combination of the methods presented for colloidal suspensions and FENE-C wormlike micelles.

of the approximations is given in Fig. 56. Fig. 57 provides a sample time series for a ferro&uid we
obtained via MD for a collection of (LJ) repulsive freely rotating permanent magnetic dipoles. Here,
it is illustrated why ferro&uids exhibit anisotropic viscosities even in the absence of a magnetic 2eld:
often due to chain formation. Not just chains, but other types of agglomerates have been observed
via MD as well. Also antiferromagnetic phases belong to this class. This phase can be stabilized if
attractive (LJ) interactions—beside dipolar interactions—are present.
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7.6. Liquid crystals: periodic and irregular dynamics

Detailed theoretical studies [325,326], based on solutions of a generalized FP equation [81,308],
revealed that in addition to the tumbling motion, wagging and kayaking types of motions, as well
as combinations thereof occur. Recently, also chaotic motions were inferred from a moment approx-
imation to the same FP equation leading to a 65-dimensional dynamical system [327] for uniaxial
particles. While we are going to consider uniaxial particles (following [324]) one may notice that for
long triaxial ellipsoidal non-Brownian particles chaotic behavior had been also predicted in [328].
Point of departure is the following equation of change for the alignment tensor (notice the similarity
with Eq. (54))

�a(9a=9t − 2 !× a ) ++(a) = −
√

2�ap� : (80)

The quantity + is the derivative of a Landau–de Gennes free energy V, Eq. (81) below, with respect
to the alignment tensor. It contains terms of 2rst, second, and third order in a. The equation stated
here was 2rst derived within the framework of irreversible thermodynamics [296,297], where the
relaxation time coeMcients �a ¿ 0 and �ap are considered as phenomenological parameters, for their
microscopic interpretation see Section 7. Eq. (80) can also be derived, within certain approximations
[329], from the FP used there. Then �a and the ratio −�ap=�a are related to the rotational di?usion
coeMcient Dr and to a nonsphericity parameter associated with the shape B of a particle. Eq. (80) is
applicable to both the isotropic and the nematic phases. Limiting cases that follow from this equation
are the pretransitional behavior of the &ow birefringence [309,330] in the isotropic phase and the
EL theory (Section 7.1) in the uniaxial nematic phase. Eq. (80) has been discussed intensively in
recent, in particular experimental, works, see e.g. [197,331] and references cited herein.

7.6.1. Landau–de Gennes potential
The 2ve components ai of a—relative to the symmetry-adapted basis system (8), (9)—are ex-

pressed in units of the magnitude of the equilibrium alignment at the temperature (or concentration)
where the nematic phase of a lyotropic LC coexists with its isotropic phase. In its dimensionless
form the Landau–de Gennes free energy invokes a single model parameter #, viz.,

2V = #a2 − 2I (3) + a4; I (3) =
√

6 tr(a · a · a) : (81)

Here I (3) is the third order scalar invariant. The dynamical system (80) has been rewritten in terms
of the ai’s in [329] and contains three control parameters two of which are determined by the state
point and the material chosen, the third control parameter is a dimensionless shear rate # ˙ !̇
[332]. Eq. (80) with a3;4 = 0 describes correctly the &ow aligned state as well as the tumbling and
wagging behavior of the full system for certain ranges of control parameters, see [329] for a detailed
analysis. Here we wish focus on the symmetry breaking solutions with a3;4 �= 0. These solutions are
associated with kayaking types of motions, but also rather complex and chaotic orbits are found.
We use a fourth-order Runge–Kutta method with 2xed time step to solve the dynamic system
(Fig. 58).

7.6.2. In-plane and out-of-plane states
A solution phase diagram of the various in-plane and out-of-plane states is drawn for # = 0 in

Fig. 59, in its caption we introduce abbreviations for the types of orbits. The three orbits, T, W, A
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Fig. 58. Solution phase diagram of the steady and transient states of a liquid crystal modeled by the FP equation (49)
supplemented by the Landau–de-Gennes potential, Eq. (81) with # = 0. The solid line is the border between the in-plane
orbits T(umbling), W(agging) and A(ligned); the dashed line and the dotted line delimit the regions where the out-of-plane
orbits K(ayaking)T and KW, respectively, exist. Here #; �, and �k denote dimensionless shear rate #, tumbling parameter
of the EL theory, and �k =

√
5�Seq

2 where Seq
2 = lim#→0 S2 is an equilibrium order parameter. Adapted from Ref. [324].

were identi2ed in [329]. The kayaking orbits [325,326], KT and KW, are distinguished from each
other according to Ref. [333]. Because the physical situation is invariant under the transformation
a3;4 → −a3;4, two equivalent kayaking states exist. The system shows rather complicated dynamical
behavior in region C of the solution diagram where neither one of the simple periodic states nor
an aligning state is stable. The speci2c orbits had been classi2ed in [324] as (i) Periodic KT/KW
composite states where the KW sequences are damped with increasing shear rate; (ii) Irregular KT
or KT/KW states for which the largest Lyapunov exponent is of order 0:01 : : : 0:05; (iii) Intermittent
KT, and (iv) Period doubling KT states. The route to chaos for increasing shear rates had been
found to depend on the tumbling parameter. When the &ow-aligned (A) phase is approached from
the complex (C) regime, the oscillation period grows in2nitely high, in contrast to the behavior at the
KW → A transition, where the amplitude of the oscillation gets damped. The resulting bifurcation
plot has a striking similarity to the Feigenbaum diagram of the logistic map, xn+1 = rxn(1 − xn).
The distance between successive period doubling steps in Fig. 59 shrinks rapidly with the order of
the period as in the Feigenbaum diagram. Even the chaotic region exhibits the same type of banded
structure and has windows of periodic behavior. However, at # ≈ 3:748, the chaotic band enlarges
abruptly. The reason for this behavior is the equivalence of the states a3;4 and −a3;4. To test the
similarity of the period doubling routes, the values #n where a period of order 2n emerges and the
value #∞ for the beginning of chaos were calculated in [324] for n = 1 : : : 5. Like for the logistic
map, the #n scale according to a law #n = #∞ − C *−n for n�1, with the Feigenbaum constant *.
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Fig. 59. Feigenbaum diagram of the period doubling route (same system as for Fig. 58), for the particular shear rate
# = 3:74 : : : 3:75. Plot of the Poincar]e map a4(ti) for i = 1 : : : 82 at a3 = 0 vs the ‘control parameter’ #, the dimensionless
shear rate. The ai’s denote components of the alignment tensor with respect to the symmetry adapted set of basis tensors
(8), (9). The inset shows the shear stress vs time for two 2xed shear rates, # = 3:778 (thin line), and # = 3:776
(thick line), where the latter case exempli2es transient, rheochaotic behavior. All quantities in dimensionless units. Adapted
from Ref. [324].

For our problem, a nonlinear 2t yields *=4:83±0:02. The value agrees qualitatively with that for the
logistic map. *= 4:669 : : :, and a similar value had been reported in [327]. Irregular behavior of the
alignment tensor a immediately converts into irregular behavior for rheological properties, cf. Fig. 59
for an example. Based on the 2ndings reported here, the inhomogeneous extension [299,334,335]
of the present model can be expected to be of relevance in describing experimentally observed
instabilities, irregular banded and striped textures [336–339].

8. Connection between di*erent levels of description

8.1. Boltzmann equation

One of the major issues raised by the Boltzmann equation is the problem of the reduced descrip-
tion. Equations of hydrodynamics constitute a closet set of equations for the hydrodynamic 2eld (local
density, local momentum, and local temperature). From the standpoint of the Boltzmann equation,
these quantities are low-order moments of the one-body distribution function, or, in other words, the
macroscopic variables. The problem of the reduced description consists in deriving equations for the
macroscopic variables from kinetic equations, and predicting conditions under which the macroscopic
description sets in. The classical methods of reduced description for the Boltzmann equation are:
the Hilbert method, the Chapman–Enskog method, and the Grad moment method, reviewed in [4].
The general approach to the problem of reduced description for dissipative system was recognized
as the problem of 2nding stable invariant manifolds in the space of distribution function. The notion
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of invariant manifold generalizes the normal solution in the Hilbert and in the Chapman–Enskog
method, and the 2nite-moment sets of distribution function in the Grad method. A generalization
of the Grad moment method is the concept of the quasiequilibrium approximation, cf. Section 2.6
and Refs. [4,97]. Boltzmann’s kinetic equation has been expressed in GENERIC form [340], cf.
Section 8.3, demonstrating that no dissipative potential is required for representing these equations.

8.2. Generalized Poisson structures

A similar formal structure, namely a symplectic structure, for thermodynamics and classical me-
chanics has been noted early, e.g., by Peterson in his work about the analogy between thermody-
namics and mechanics [62]. Peterson notes the equations of state—by which he means identical
relations among the thermodynamic variables characterizing a system—are actually 2rst-order par-
tial di?erential equations for a function which de2nes the thermodynamics of the system. Like the
Hamilton–Jacobi equation, such equations can be solved along trajectories given by Hamilton’s equa-
tions, the trajectories being quasistatic processes which obey the given equation of state. This gave
rise to the notion of thermodynamic functions as in2nitesimal generators of quasistatic processes,
with a natural Poisson bracket formulation. This formulation of thermodynamic transformations is in-
variant under canonical coordinate transformations, just as classical mechanics is. The time-structure
invariance of the Poisson bracket as manifested through the Jacobi identity has been used to de-
rive constraint relationships on closure approximations [67]. Next we turn to the modern GENERIC
framework which o?ers a particular useful generalized Poisson structure (GPS). The Poisson struc-
ture, together with a Jacobi identity had been recognized recently in two-&uid electrodynamics, in
the generalized Heisenberg picture quantum mechanics, &uid models of plasma physics, and other
branches of physics, cf. [40]. There is a variety of directions, which have not yet been worked out
in detail, but extensively discussed. Upon these are nonholonomic constraints [341], boundary con-
ditions [342,343], and extensions to so-called super-Poisson structures [344], Nambu–Jacobi brackets
[345,346]. For these structures a number of di?erent representations is known such that knowledge
can be directly passed over to GENERIC concerning the development of eMcient algorithms solving
the GENERIC equations.

8.3. GENERIC equations

The GENERIC equations [40,347] preserve their structure across di?erent levels (micro–macro)
of description for beyond-equilibrium systems. For a given set of system variables x (de2ning the
actual state space) the following (reversible and dissipative) brackets

{A; B} ≡ *A
*x

· L · *B
*x

; [A; B] ≡ *A
*x

·M · *B
*x

(82)

for arbitrary functionals A; B on state space, the time evolution equation for arbitrary A
dA
dt

= {A;H} + [A; S] ; (83)

the degeneracy conditions

M · *H
*x

= 0; L · *S
*x

= 0 ; (84)
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the antisymmetry of L, the Casimir symmetry of M , together with the positive de2niteness of M
and the following Jacobi identity (for arbitrary functionals A; B; C)

0 = {{A; B}; C} + {{B; C}; A} + {{C; A}; B} (85)

constitute the GENERIC framework [40]. The Hamiltonian H and entropy S essentially model the
system under consideration, whereas L can be motivated by analyzing the transformation behavior of
variables, and M models the dissipative motion of variables. The requirement for energy conserva-
tion and increasing entropy, respectively, implies the antisymmetry of L and a degeneracy condition
and positive semide2nite block M . The Jacobi identity must hold in order to ensure a self-consistent
time-invariant description. A large number of thermodynamically admissible (generalized and
extended) physical models has been collected at www.polyphys.mat.ethz.ch.

For a GENERIC bracket one can deduce the following evolution equation d{A; B}=dt={dA=dt; B}+
{A; dB=dt}={{A; B}; H}. This expression re&ects the time structure invariance of a Poisson bracket,
i.e., the operator L behaves as a ‘conserved’ quantity. If the subscript t denotes the time-dependent
solution Ft of the evolution equation dFt=dt={Ft; H}, then the Jacobi identity implies time structure
invariance in the sense that {A; B}t = {At; Bt} for arbitrary functions A, B on state space. De2nition
(82) implies that when evaluating the Jacobi identity (85) second derivatives of the functions A; B; C
would appear in principle. However, these second derivatives cancel pairwise, simplifying the Jacobi
identity. The bracket of classical point mechanics ful2lls the Jacobi identity since all elements of
the matrix L are constant. It is suMcient to test the Jacobi identity against three linear functions
[348] (this reference also provides a code for evaluating Jacobi identities). Worked out examples
are given in [40,348].

Dynamic GENERIC equations for a single-segment reptation model without independent alignment,
incorporating ideas of convective constraint release and anisotropic tube cross section in &ow [349]
have been developed by )Ottinger [350], and investigated in [265], see also Section 6.1.

8.4. Dissipative particles

Because large-scale NEMD simulation can bridge time scales dictated by fast modes of mo-
tion together with slow modes, which determine viscosity, it can capture the e?ects of varying
molecular topology on &uid rheology resulting, e.g., from chemical reactions. Mesoscopic regimes
involving scales exceeding several nsec and/or micrometers require the ‘fast’ molecular modes of
motion to be eliminated in favor of a more coarse grained representation, where the internal de-
grees of freedom of the &uid are ignored and only their center of mass motion is resolved. On
this level, the particles will represent clusters of atoms or molecules, so-called, dissipative parti-
cles (DPD). It is possible to link and pass the averaged properties of molecular ensembles onto
dissipative particles by using bottom up approach from NEMD/NEBD by means of the somewhat
systematic coarse-graining procedure [351]. GENERIC had been used to construct modi2cations
of Smoothed Particle Hydrodynamics (SPH) including thermal &uctuations and DPD in [352]. A
method suited for the eMcient treatment of polymer solution dynamics is the Lattice Boltzmann
(LB) method and its improved versions [353]. A GENERIC formulation of LB has been discussed
in [354]. In its application to polymer solution dynamics, the polymer itself is still treated on
a simple molecular level using a bead–spring lattice model, but the solvent molecules are treated
on the level of a discretized Boltzmann equation. In this way the hydrodynamics of the solvent is

http://www.polyphys.mat.ethz.ch
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correctly captured, and the hydrodynamic interaction between di?erent units on the polymer chain,
which is mediated by the hydrodynamic &ow generated within the solvent through the motion
of the polymer, is present in the simulation without explicit treatment of all solvent molecules.
It is expected, that NEMD, DPD and LB together can capture both microscopic and macroscopic
scales [355].

8.5. Langevin and Fokker–Planck equation, Brownian dynamics

In order to apply the GENERIC framework it is important to identity the relevant (state) variables
which may suMciently describe the given physical system. In Section 6 we dealt with primitive path
models which certainly are more abstract and less dimensional objects than FENE chains discussed
in the foregoing sections. With the treatment of elongated particles (Section 7) we continued the way
through models possessing a decreasing number of molecular details. We therefore provide some
general comments on how to reduce the number of variables in those dynamical model systems,
which are described in terms of stochastic di?erential equations, such as Langevin equations for a
set of stochastic variables x, whose typical structure is to split the equation of motion for a variable
into a deterministic (drift) plus a stochastic (di?usion) part

d
dt
x= A(x) + B · , (86)

with time t and ‘noise’ , or equivalent FP equations (used at several places throughout this review)
for the corresponding distribution function  (x; t)

9 
9t = LFP ; LFP = − 9

9x · A(x; t) +
9
9x

9
9x : D(x; t) (87)

with di?usion tensor D= B† · B using Ito’s interpretation. The diMculty of solving the FP equation
like any other partial di?erential equation increases with increasing number of independent variables.
It is therefore advisable to eliminate as many variables as possible. For an introduction to stochas-
tic modeling, including an introduction to nonequilibrium Brownian dynamics (NEBD) computer
simulation which rigorously solves (86), see [356,357,368].

8.6. Projection operator methods

If the drift and di?usion coeMcients do not depend on some variables, the Fourier transform of the
probability density for these variables can then be obtained by an equation where the variables no
longer appear. To be more speci2c, if the drift and di?usion coeMcients do not depend on x1; : : : ; xn

with N ¿n being the total number of variables, making a Fourier transform of p with respect to
the 2rst n variables, by using the FP equation (87) and performing partial integrations the following
equation for  ̂ =  ̂ (xn+1; : : : ; xN ) must be solved: 9 ̂ =9t = L̂FP ̂ = L̂FP(xn+1; : : : ; xN ) with

L̂FP = −i
n∑

i=1

kiAi −
N∑

i=n+1

9Ai

9xi
−

n∑
i; j=1

kikjDij + 2i
n∑

i=1

N∑
j=n+1

ki
9Dij

9xj
+

N∑
i; j=n+1

92Dij

9xi9xj
: (88)

Generally, (88) must be resolved for every k. If one is looking only for periodic solutions in the
variables xi (i6 n), the wave numbers ki must be integers and the integral (for the Fourier transform)
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must be replaced by a sum over these integer numbers. Furthermore, if one is interested only in
some expectation values of the form 〈exp imxi(t)〉 (for a speci2c i6 n), only the solution of (88)
with ki = −m needs to be calculated. A class of FP equations with two variables where the drift
and di?usion coeMcients do not depend on one variable and where solutions are given in terms of
hypergeometric functions, see [358] and Appendix A6 of [357]. If the decay constants for some
variables are much larger than those for other ones, the ’fast’ variables can then approximately be
eliminated. This is achieved by adiabatic elimination of the fast variables. Starting from the Langevin
equation (86) for the slow (≡ x1) and fast (≡ x2) variables, the FP equation for the distribution
function  (x) is rewritten as 9 =9t = [L1 + L2] , with −i = 1 (slow) and i = 2 (fast)—

Li =
9Ãi(x)
9xi

+
92

9x2
i
Dii(x); Ãi(x) = Ai(x) + Bii

9
9xi

Bii : (89)

In the spirit of the Born–Oppenheimer approximation in quantum mechanics one 2rst looks for
eigenfunctions of the operator L2. Here the variable x1 appears as a parameter. We assume that for
every parameter a stationary solution and discrete eigenvalues �n and eigenfunctions �n exist (n¿ 0).
These generally depend on the parameter x1: L2(x)�n(x) = �n(x1)�n(x). For n= 0, �0 = 0 we have
the stationary solution  stat = �0(x). By expanding the distribution function  into the complete set
�n of the operator L2 (x) =

∑
m cm(x1; t)�m(x), and inserting this expansion into the FP equation

involving L1;2 one obtains [9=9t +�n(x1)]cn =
∑∞

m=0 Ln;mcm, with Ln;m ≡ ∫ �+
n L1(x)�m(x) dx2, and

the functions �+ denote the eigenfunctions of the adjoint operator L†
1. The orthonormalization and

completeness relations read
∫
�†

n�m dx2 = *nm and
∫
�†

n(x1; x2)�n(x1; x′2) = *(x2 − x′2), respectively.
The Ln;m are operators with respect to the slow variable x1. Because we are interested only in the
time scale large compared to the decay coeMcient of the fast variable, we may neglect the time
derivative in the equation with n¿ 1. Finally, the equation of motion for the distribution function
 (x1; t) = c0(x1; t) of the relevant variable x1 reads

9 (x1; t)
9t = L0 (x1; t); L0 = L0;0 +

∞∑
n=1

L0; n�n(x1)−1Ln;0 + · · · ; (90)

where the dots denote higher order terms and, in particular,

L0;0 = − 9x
9x1

∫
Ã1(x)�0(x) dx2 +

92

9x2
1

∫
Dii(x)�0(x) dx2 : (91)

To solve (90) explicitly for the distribution function  (x1; t) for the slow variables, the operator
L0 should be given analytically. This is the case only if the eigenvalues and eigenfunctions of
L2 are known analytically and if the matrix elements occurring in (90) can be calculated analyt-
ically. An application of this procedure is given in p. 192 of Ref. [357]. Quite often the elimi-
nation of one or more variables is done with the Nakajima–Zwanzig projector operator formalism
[359–362]. This formalism can be alternatively applied, whereby a projection operator P is de2ned
by P = (

∫
�†

0 dx2)�0, where �0 is the (above) stationary solution. In view of the orthogonal-
ity relations given above, P2 = P for a projection operator holds. Because the system �n; �†

n is



538 M. Kr�oger / Physics Reports 390 (2004) 453–551

complete, the operator 1 −P may be cast in the form Q ≡ (1 −P) =
∑∞

n=1 (
∫
�†

n dx2)�n. In
the projection operator formalism, the equation of motion is split up into two coupled equations for
P and (1 −P) , i.e., into

9
9t  = LFP = PLFP + QLFP ; (92)

with PLFP =PLP +PLQ , and QLFP =QLP +QLQ . The usual Markov approximation
to the formal solution of this problem consists in neglecting the time derivative, as used here in
order to derive (90).

An appropriate way of systematic coarse-graining is provided by GENERIC [40] and its statistical
foundation based on projection operator techniques for separating time scales [363]. For Monte Carlo
simulations, nonequilibrium ensembles corresponding to the deformations of polymer molecules in
&ows can be introduced and used in order to determine deformation-dependent energies and entropies
[364], which are the generators of reversible and irreversible time-evolution, Eq. (82), respectively.
For MD simulations, the projection-operator formalism shows that all dynamic material information
can and actually should be evaluated in a systematic way from simulations over time spans much
shorter than the 2nal relaxation time [365].

8.7. Stress tensors: Giesekus–Kramers–GENERIC

Within so called GENERIC Canonical Monte Carlo (GCMC) [364] and the ‘reduced description’
mentioned in Section 2.6 the relevant distribution function is approximated using a reduced set of
(slow) variables. These may be particular moments of the distribution function itself. Using the
underlying FP equation from this representation one can derive equations of change for the slow
variables, and sometimes solve the set of equations for the ‘conjugate’ or ‘dual’ variables eMciently.
Within GCMC the distribution function (based on all ‘atomistic’ phase space coordinates abbreviated
as z) involves unknown Lagrange parameters / and a ‘phase space function’ *(z):

 (z)/ =  eq
1
Z

exp−/:*;  eq ˙ exp−�E0 (93)

normalized by Z . Here, For the case of the homogeneous Hookean bead–spring model (Rouse model)
with bond energy E0 ≡ (H=2)

∑
k Qk ·Qk we wish to see under which conditions the three di?erent

representations for the stress tensor (Gieskus, Kramers, GENERIC) are equal to each other, and we
want to provide an expression of the Lagrange parameter in terms of &ow parameters. See [366] for
a discussion about material objectivity and thermodynamical consistency of stress tensor expressions.

Let us consider a single (arbitrary) normal mode * ≡ XPXP (P ∈ 1; : : : ; N − 1) as slow variable.
The 2rst mode, for example, is given by X1 ≡

∑
i(2=N )1=2 sin(i8=N )Qi [68]. The Gieskus expression

for the stress tensor is known as

�GIE = −1
2
n-

N−1∑
i; j=1

Ci;j(� · 〈QiQj〉 + 〈QiQj〉 · �T) (94)
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with the useful properties
∑

ij CijQiQj =
∑

k ckXkXk ; ck = 1=ak and ak = 4 sin2(k8=(2N )) and∑N−1
k=1 ck = (N 2 − 1)=6 [6]. The Kramers expression reads [6]

�KRA = n
N−1∑

i

〈QiFi〉 + (N − 1)nkBT 1 (95)

with Fi = −dE0=dQi, and the GENERIC expression for the same problem (assuming a symmetric
stress tensor) reads [40]

�GEN = nkBT (/ · X + XT · /T)); X = 〈*〉 (96)

In the above equations the average is de2ned via 〈F〉 =
∫ ∫

F  / dz where z = {Q1;Q2; : : : ;QN−1}.
Inserting the special form * into (93) we obtain  (z)/=Z−1 exp{−/ : X1X1− (�H=2)

∑
k Xk ·Xk}

and X = 〈*〉= 1
2(/+(�H=2)1)−1, or equivalently, an expression of the Lagrange parameter in terms

of the averaged normal mode /= 1
2(X

−1 − �H1). The GENERIC stress is thus rewritten as

�GEN = nkBT (1 − �HX) : (97)

By using the identity

〈XkXk〉 =
1

�H
1 + *k;P

(
X − 1

�H
1
)

(98)

we immediately see, that �KRA = �GEN rigorously holds. Concerning the correspondence between
Gieskus and GENERIC stresses we arrive at the following condition for X in terms of the &ow
2eld: �GEN = �GIE if and only if

− 4�H�
(
N 2 − 1

6
− cP

)
− 2cP�H (�H)(� · X + X · �T) = 1 − �H X (99)

with the time constant of Hookean dumbbell �H = -=(4H). In order to apply these 2ndings, let us
consider simple shear &ow with dimensionless shear rate #= !̇�H . For that particular case we obtain
the following moment X and Lagrange parameter / in terms of the shear rate:

X =
1

�H




1 + 4cP
(N 2 − 1)

3
#2 N 2 − 1

3
# 0

1 0

1


 ; (100)

/= �H




(N 2−1)(N 2−1−12cP)
2(9−#2(N 2−1)(N 2−1−12cP))

#2 − 3(N 2−1)
2(9−#2(N 2−1)(N 2−1−12cP))

# 0

(N 2 − 1)
2(9 − #2(N 2 − 1)(N 2 − 1 − 12cP))

#2 0

0


 :

(101)
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Note that N 2 −1−12cP ¡ 0 for P=1, N 2 −1−12cP ¿ 0 for P=2; 3, both signs (dependent on N )
otherwise. The 2rst mode should always be taken into account within the set of slow variables. / is
nontrivial and singular. When considering a single mode P we therefore recover the expected form
of the stress tensor and the exact Rouse viscosity by matching the stresses, but we have disagreement
for the 2rst normal stress. To be more speci2c,

$ = nkBT�H
(N 2 − 1)

3
= $Rouse;

%1 = nkBT�2
H

4(N 2 − 1)
3

cP �= %Rouse
1 : (102)

This example can be generalized to other types of &ow and other (more suitable) choices for the
phase space function * in terms of ‘atomistic coordinates’. Several examples are discussed in [364].
The goal is to approximate the correct distribution function in a most eMcient way by considering
a small number of relevant variables. These must not necessarily be the normal coordinates we had
just chosen for illustrative purpose.

8.8. Coarse-graining: from atomistic chains to the primitive path

A procedure for coarse-graining polymer molecules from the atomistic level of description
(and also FENE chain level) to the reptation level for entangled polymers had been presented in
Ref. [142]. While this method is based on collapsing a certain number of atoms or monomers into
a large unit at their center of mass, the smooth and uniform dependence of the coarse-grained chain
on positions of all atoms proposed in [367] is useful if one is interested in a two-way coupling
of two levels of description as pointed out in [368]. We just summarize how to explicitly apply
coarse-graining from the latter procedure, which is illustrated in Fig. 60.

The transformation, parametrized by a single parameter, P' : {x0
i } → {xi} maps a set of i=1; : : : ; N

atomistic (or FENE chain) coordinates of a linear chain to a new set with an equal number of
coordinates, called coarse-grained coordinates xi, which de2ne the coarse-grained chain or ‘primitive
path’ {xi} of the atomistic chain. In order to motivate the mapping, we require, that P0 = Id,
i.e., for ' = 0 all information of the atomistic chains is conserved for the coarse-grained chain. The
opposite limit re&ects a complete loss of information about the atomistic structure, i.e., the projection
in the limit ' → ∞ gives give a straight line (or dot) for arbitrary atomistic con2gurations. The
recommended mapping results from minimization of the energy

E ˙
1
2

N∑
i=1

(xi − x0
i )

2 +
'
2

N−1∑
i=1

(xi+1 − xi)2; (103)

for a system of two types of Hookean springs. The 2rst type connects adjacent beads within the prim-
itive chain, the second type connects the beads of the primitive chain with the atomistic beads, and '
is the ratio between spring coeMcients. The mapping from atomistic xo to coarse-grained coordinates
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Fig. 60. Microscopic chain (dark beads) and its primitive path (light beads, tangential cylinder indicated). The latter is
obtained by the mapping P' via Eq. (104) for a certain ratio of spring coeMcients '.

x reads, with the N × N tri-diagonal matrix P−1 which can be inverted with order N e?ort:

xi =
N∑

j=1

Pij · x0
j ; P−1 =




1 + ' −' 0 · · · · · · 0

−' 1 + 2' −' 0
. . .

...

0 −' 1 + 2'
. . . . . .

...

...
. . . . . . . . . −' 0

...
. . . 0 −' 1 + 2' −'

0 · · · · · · 0 −' 1 + '




; (104)

for all i = 1 : : : N . The discrete coarse-graining had been recently analyzed in [368] for wormlike
‘atomistic’ chains characterized by their squared end-to-end vector 〈R2

(0)〉 and their tube diameter dT

(i.e., quantities usually tabulated, cf. Section 4.5 and Table 3). One of the important result of [368]
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states, that the correct parameter ' is determined by these two characteristics via

1
'1=2 ˙

〈R2
(0)〉

N − 1
1
d2
T
; for '1=2�N; (105)

with a prefactor of order unity. In terms of the quantities introduced in Section 4.5 this relationship
is rewritten as '˙ N 2

e , for N�Ne with the characteristic entanglement length Ne.

9. Concluding remarks

The development of constitutive relationships which connect strain or strain rate with stress and
material behavior is at the heart of a successful macroscopic modeling of complex &uids. We re-
viewed simple physical models which allow to 2nd such relationships for the case of neutral bulk
polymeric &uids, nematic &uids, ferro&uids, colloidal suspensions. We have shown that the simplest
approximate treatments (Section 2) such as the Peterlin approximation turn out to be insuMciently
precise. More detailed chain models which allow to capture molecular architecture, 2nite extensi-
bility, bending sti?ness and interchain interactions without approximation, on the other hand, are
computationally expensive while remaining conceptually simple (Sections 3–5). In order to predict
rheooptic behaviors on time and length scales relevant for applications chemical details are shown
to be not essential. These models serve to make progress towards appropriate decoupling approxi-
mations for stochastic di?erential equations, and a reduced description using relevant (slow) variables
(Sections 6–8). Most interestingly, they provide deep insight into the microscopic origins of
viscoelastic behavior.

This paper should be viewed as an introduction to the microscopic modeling of anisotropic, in
particular, polymeric &uids involving FENE chain models, tube models, and elongated particle models
and can serve as a starting point to devise suitable models and to understand nonequilibrium complex
&uids as encountered in applications and current experiments. We discussed several eMcient strategies
to solve microscopic models such as the Cholesky decomposition or variance reduction methods for
FENE solutions with HI. We provided examples which demonstrated how to attack the nonanalytical
solvable models in approximate, and less approximate fashion. Coarsening procedures have been
applied to microscopic trajectories onto objects which can be retreated within the framework of
primitive path models. Using the coarsening procedure of Section 8.8 one should be able to extract
the parameters of tube models directly from atomistic simulation on the nanosecond scale, i.e., small
compared to the reptation time scale. Insight from the microscopic FENE chain level—such as
anisotropic tube renewal, stress-optic failures—have been used to re2ne these theories and to work
out consequences in Section 6. The rheological crossover observed for FENE chain melts allowed to
discuss and interpret characteristic lengths scales in polymer melts. These scales can be expressed in
terms of density, molecular weight, and &exibility, i.e., based on geometric or ‘topological’ quantities
and independent of chemical details. The soft ellipsoid model [369,5] is another representative of
a coarsening strategy from many monomers to many polymers. Elongated (rigid) particle models
have been characterized in detail and connection was made to macroscopic description such as the
EL theory for nematics. Inhomogeneous extensions of FP discussed in this review have studied,
e.g., for liquid crystals in order to calculate elastic coeMcients [306].
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The formulation of new models for nonequilibrium &uids remains a diMcult task but should be
guided through frameworks ensuring their thermodynamically admissible, intrinsically consistent, de-
scription. The corresponding GENERIC approach reviewed in Section 8.3 has not yet been extended
to describe nonholonomic constraints or boundary conditions. It may be interesting to show, e.g.,
how the simple model for polymer melts considering anisotropic tube renewal (Section 6.2) may be
cast into a suitable generalized framework.

This review did rarely provide suMciently detailed information on how to implement simulations,
but original articles for each application have been cited, where missing details can be found. Stan-
dard textbooks such as [157,68,143,197,209,6] contain background and supplementary information
on the modeling of nonequilibrium &uids. An overview of some of the more popular computational
models and methods used today in the 2eld of molecular and mesoscale simulation of polymeric
materials, ranging from molecular models and methods that treat electronic degrees of freedom to
mesoscopic 2eld theoretic methods can be also found in [370,5,14].
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