Exam 1 Formulas
 Polymer Rheology Prof. Faith Morrison

Rate of deformation tensor: $\underset{\underline{\gamma}}{\dot{\gamma}} \nabla \underline{v}+(\nabla \underline{v})^{T}$
Rate of deformation: $\dot{\gamma}=|\underline{\underline{\dot{\gamma}}}|$
Tensor magnitude: $\quad A=|\underline{\underline{A}}|=+\sqrt{\frac{\underline{\underline{A}: \underline{\underline{A}}}}{2}}$
Total stress tensor: $\underline{\underline{\Pi}}=p \underline{\underline{I}}+\underline{\underline{\tau}}$
(Bird sign convention on stress)

Navier-Stokes Equation: $\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}$
$\begin{aligned} & \text { Cauchv Momentum Eauation: } \\ & \text { (Bird sign convention on stress) }\end{aligned} \rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}$

Continuity Equation:

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \underline{v})
$$

Newtonian, incompressible constitutive equation: $\underline{\underline{\tau}}=-\mu\left(\nabla \underline{v}+(\nabla \underline{v})^{T}\right)$
(Bird sign convention on stress)
Fluid force $\underline{F}_{o n}$ on a surface S:
(Bird sign convention on stress)

$$
\underline{F}_{o n}=\left.\iint_{S}[\hat{n} \cdot-\underline{\underline{\Pi}}]\right|_{\text {surface }} d S
$$

Flow rate Q through a surface S :

$$
Q=\iint_{S}[\hat{n} \cdot \underline{v}]_{\text {surface }} d S
$$

Fluid torque $\underline{T}_{o n}$ on a surface S: ($\underline{\tilde{R}}$ is the lever arm vector from the axis of rotation to the point of application of the force) (Bird sign convention on stress)

$$
\underline{T}_{o n}=\iint_{S}[\underline{\tilde{R}} \times(\hat{n} \cdot-\underline{\underline{\Pi}})]_{\text {surface }} d S
$$

Table of Integrals

$$
\begin{gathered}
\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, n \text { is a constant } \\
\int \frac{1}{y} d u=\ln u+C \\
\int \ln u d u=u \ln u-u+C \\
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
\end{gathered}
$$

Miscellaneous

$$
\begin{gathered}
\underline{\underline{A}}=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)_{123} \\
\frac{d}{d s}(u w)=u \frac{d w}{d s}+w \frac{d u}{d s} \\
\underline{u} \times \underline{w}=\operatorname{det}\left|\begin{array}{lll}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left(\begin{array}{c}
u_{2} w_{3}-u_{3} w_{2} \\
-\left(u_{1} w_{3}-u_{3} w_{1}\right) \\
u_{1} w_{2}-u_{2} w_{1}
\end{array}\right)_{123}
\end{gathered}
$$

Cylindrical Coordinate System: Note that the θ-coordinate swings around the z-axis and the r-coordinate is perpendicular to the z-axis.

Spherical Coordinate System: Note that the θ-coordinate swings down from the z-axis and the r-coordinate emits radially from the origin; these are different from their definitions in the cylindrical system above.

System	Coordinates	Basis vectors
Spherical	$x=r \sin \theta \cos \phi$	$\hat{e}_{r}=(\sin \theta \cos \phi) \hat{e}_{x}+(\sin \theta \sin \phi) \hat{e}_{y}+\cos \theta \hat{e}_{z}$
Spherical	$y=r \sin \theta \sin \phi$	$\hat{e}_{\theta}=(\cos \theta \cos \phi) \hat{e}_{x}+(\cos \theta \sin \phi) \hat{e}_{y}+(-\sin \theta) \hat{e}_{z}$
Spherical	$z=r \cos \theta$	$\hat{e}_{\phi}=(-\sin \phi) \hat{e}_{x}+\cos \phi \hat{e}_{y}$
Cylindrical	$x=r \cos \theta$	$\hat{e}_{r}=\cos \theta \hat{e}_{x}+\sin \theta \hat{e}_{y}$
Cylindrical	$y=r \sin \theta$	$\hat{e}_{\theta}=(-\sin \theta) \hat{e}_{x}+\cos \theta \hat{e}_{y}$
Cylindrical	$z=z$	$\hat{e}_{z}=\hat{e}_{z}$

Coordinate system	surface differential $d S$
Cartesian (top, $\hat{n}=\hat{e}_{z}$)	$d S=d x d y$
Cartesian (side a, $\hat{n}=\hat{e}_{y}$)	$d S=d x d z$
Cartesian (side b, $\hat{n}=\hat{e}_{x}$)	$d S=d y d z$
cylindrical (top, $\hat{n}=\hat{e}_{z}$)	$d S=r d r d \theta$
cylindrical (side, $\hat{n}=\hat{e}_{r}$)	$d S=R d \theta d z$
spherical, $\left(\hat{n}=\hat{e}_{r}\right)$	$d S=R^{2} \sin \theta d \theta d \phi$

Coordinate system	volume differential $d V$
Cartesian	$d V=d x d y d z$
cylindrical	$d V=r d r d \theta d z$
spherical	$d V=r^{2} \sin \theta d r d \theta d \phi$

