Exam 1 Formulas

Polymer Rheology Prof. Faith Morrison

Rate of deformation tensor: $\underline{\dot{y}} = \nabla \underline{v} + (\nabla \underline{v})^T$

Rate of deformation: $\dot{\gamma} = \left| \underline{\dot{\gamma}} \right|$

Tensor magnitude: $A = \left| \underline{\underline{A}} \right| = + \sqrt{\frac{\underline{\underline{A}} : \underline{\underline{A}}}{2}}$

Total stress tensor: $\underline{\underline{\Pi}} = p\underline{\underline{I}} + \underline{\underline{\tau}}$ (Bird, UR sign convention on stress)

Navier-Stokes Equation: $\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = -\nabla p + \mu \nabla^2 \underline{v} + \rho \underline{g}$

Cauchy Momentum Equation: $\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = -\nabla p - \nabla \cdot \underline{\underline{\tau}} + \rho \underline{g}$ (Bird, UR sign convention on stress)

Continuity Equation: $\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \underline{v})$

Newtonian, incompressible constitutive equation: $\underline{\underline{\tau}} = -\mu(\nabla \underline{v} + (\nabla \underline{v})^T)$ (Bird sign convention on stress)

Fluid force \underline{F}_{on} on a surface S:

(Bird, UR sign convention on stress)

$$\underline{F}_{on} = \iint_{S} \left[\widehat{n} \cdot -\underline{\underline{\Pi}} \right] \Big|_{surface} dS$$

Flow rate Q through a surface S:

$$Q = \iint\limits_{S} [\widehat{n} \cdot \underline{v}]_{surface} dS$$

Fluid torque \underline{T}_{on} on a surface $S: (\underline{\tilde{R}})$ is the lever arm vector from the axis of rotation to the point of application of the force) (Bird, UR sign convention on stress)

$$\underline{T}_{on} = \iint_{S} \left[\widetilde{\underline{R}} \times (\widehat{n} \cdot -\underline{\underline{\Pi}}) \right]_{surface} dS$$

Table of Integrals

$$\int u^n du = \frac{u^{n+1}}{n+1} + C \qquad n \text{ is a constant}$$

$$\int \frac{1}{u} du = \ln u + C$$

$$\int (\ln u) du = u \ln u - u + C$$

$$\int_a^b u dv = uv \Big|_a^b - \int_a^b v du$$

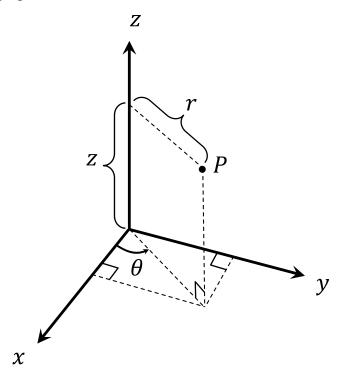
Miscellaneous

$$\underline{\underline{A}} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}_{123}$$

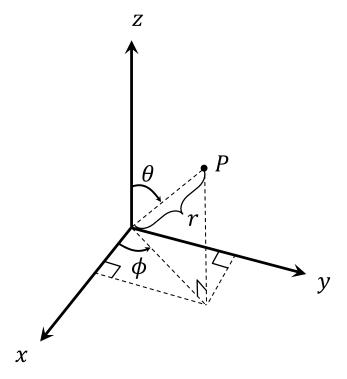
$$\frac{d}{ds}(uw) = u\frac{dw}{ds} + w\frac{du}{ds}$$

$$\underline{u} \times \underline{w} = \det \begin{vmatrix} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{pmatrix} u_2 w_3 - u_3 w_2 \\ -(u_1 w_3 - u_3 w_1) \\ u_1 w_2 - u_2 w_1 \end{pmatrix}_{123}$$

Cylindrical Coordinate System: Note that the θ -coordinate swings around the z-axis and the r-coordinate is perpendicular to the z-axis.



Spherical Coordinate System: Note that the θ -coordinate swings <u>down</u> from the **z**-axis and the **r**-coordinate emits radially from the origin to the point; these are different from their definitions in the cylindrical system above.



Cylindrical Coordinates

System	Coordinates	Basis vectors
Cylindrical	$r = \sqrt{x^2 + y^2}$	$\hat{e}_r = \cos\theta \hat{e}_x + \sin\theta \hat{e}_y$
Cylindrical	$\theta = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{e}_{\theta} = (-\sin\theta)\hat{e}_x + \cos\theta\hat{e}_y$
Cylindrical	z = z	$\hat{\boldsymbol{e}}_z = \hat{\boldsymbol{e}}_z$
C-1:1-:1	w = w aoa 0	$\hat{a} = \cos \theta \hat{a} + (\sin \theta) \hat{a}$
Cylindrical	$x = r \cos \theta$	$\hat{e}_x = \cos\theta \hat{e}_r + (-\sin\theta) \hat{e}_\theta$
Cylindrical	$y = r \sin \theta$	$\hat{e}_y = \sin\theta \hat{e}_r + \cos\theta \hat{e}_\theta$
Cylindrical	z = z	$\hat{e}_z = \hat{e}_z$

Spherical Coordinates

System	Coordinates	Basis vectors
Spherical	$x = r \sin \theta \cos \phi$	$\hat{e}_x = (\sin\theta\cos\phi)\hat{e}_r + (\cos\theta\cos\phi)\hat{e}_\theta + (-\sin\phi)\hat{e}_\phi$
Spherical	$y = r \sin \theta \sin \phi$	$\hat{e}_y = (\sin\theta\sin\phi)\hat{e}_r + (\cos\theta\sin\phi)\hat{e}_\theta + \cos\phi\hat{e}_\phi$
Spherical	$z = r \cos \theta$	$\hat{e}_z = \cos\theta \ \hat{e}_r + (-\sin\theta)\hat{e}_\theta$
Spherical	$r = \sqrt{x^2 + y^2 + z^2}$	$\hat{e}_r = (\sin\theta\cos\phi)\hat{e}_x + (\sin\theta\sin\phi)\hat{e}_y + \cos\theta\hat{e}_z$
Spherical	$\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$	$\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_{x} + (\cos\theta\sin\phi)\hat{e}_{y} + (-\sin\theta)\hat{e}_{z}$
Spherical	$\phi = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{e}_{\phi} = (-\sin\phi)\hat{e}_x + \cos\phi\hat{e}_y$

Coordinate system	surface differential dS
Cartesian (top, $\hat{n} = \hat{e}_z$)	dS = dxdy
Cartesian (side a, $\hat{n} = \hat{e}_y$)	dS = dxdz
Cartesian (side b, $\hat{n} = \hat{e}_x$)	dS = dydz
cylindrical (top, $\hat{n} = \hat{e}_z$) cylindrical (side, $\hat{n} = \hat{e}_r$)	$dS = rdrd\theta$ $dS = Rd\theta dz$
spherical, $(\hat{n} = \hat{e}_r)$	$dS = R^2 \sin \theta d\theta d\phi$

Coordinate system	volume differential dV
Cartesian	dV = dxdydz
cylindrical	$dV = r dr d\theta dz$
spherical	$dV = r^2 \sin \theta dr d\theta d\phi$