Exam 2 Formulas

CM4650 Polymer Rheology Prof. Faith Morrison

Rate of deformation tensor: $\underline{\dot{\gamma}} = \nabla \underline{v} + (\nabla \underline{v})^T$

Rate of deformation: $\dot{\gamma} = \left| \dot{\underline{\gamma}} \right|$

Tensor magnitude: $A = \left| \underline{\underline{A}} \right| = \left| \sqrt{\frac{\underline{\underline{A}} : \underline{A}}{2}} \right|$

Total stress tensor: $\underline{\underline{\Pi}} = p\underline{\underline{I}} + \underline{\underline{\tau}}$ (Bird, UR sign convention on stress)

Shear strain: $\gamma_{21}(t_a, t_b) = \int_{t_a}^{t_b} \dot{\gamma}_{21}(t^{\prime\prime}) dt^{\prime\prime}$

(Bird, UR sign convention on stress)

Newtonian, incompressible fluid: $\underline{\underline{\tau}} = -\mu(\nabla \underline{v} + (\nabla \underline{v})^T)$

Generalized Newtonian fluid (GNF): $\underline{\tau} = -\eta(\dot{\gamma})\dot{\gamma}$

Power-law GNF model: $\eta(\dot{\gamma}) = m\dot{\gamma}^{n-1}$ (Note that m and n are parameters of the model and are constants)

Carreau-Yasuda GNF model: $\eta(\dot{\gamma}) = \eta_{\infty} + (\eta_0 - \eta_{\infty})[1 + (\dot{\gamma}\lambda)^a]^{\frac{n-1}{a}}$ (Note that a, λ , η_0 , and η_{∞} are parameters of the model and are constants)

Navier-Stokes Equation:
$$\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = -\nabla p + \mu \nabla^2 \underline{v} + \rho \underline{g}$$

Cauchy Momentum Equation:
$$\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = -\nabla p - \nabla \cdot \underline{\underline{\tau}} + \rho \underline{g}$$
(Bird, UR sign convention on stress)

Continuity Equation:
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \underline{v})$$

Fluid force \underline{F}_{on} on a surface **S**: (Bird, UR sign convention on stress)

$$\underline{F}_{on} = \iint_{S} \left[\widehat{n} \cdot -\underline{\underline{\Pi}} \right] \Big|_{surface} dS$$

Flow rate **Q** through a surface **S**:

$$Q = \iint\limits_{S} [\widehat{n} \cdot \underline{v}]_{surface} dS$$

Fluid torque \underline{T}_{on} on a surface S:

 $(\underline{\tilde{R}}$ is the lever arm vector from the axis of rotation to the point of application of the force) (Bird, UR sign convention on stress)

$$\underline{T}_{on} = \iint_{S} \left[\underline{\widetilde{R}} \times (\widehat{n} \cdot -\underline{\underline{\Pi}}) \right]_{surface} dS$$

Elongational flow:
$$\underline{v} = \begin{pmatrix} -\frac{\dot{\varepsilon}(t)}{2} x_1 \\ -\frac{\dot{\varepsilon}(t)}{2} x_2 \\ \dot{\varepsilon}(t) x_3 \end{pmatrix}_{123}$$

Shear flow:
$$\underline{v} = \begin{pmatrix} \dot{\varsigma}(t)x_2 \\ 0 \\ 0 \end{pmatrix}_{123}$$

Steady shearing kinematics: $\dot{\zeta}(t) = \dot{\gamma}_0$ for all values of time t

Start-up of steady shearing kinematics: $\dot{\varsigma}(t) = \begin{cases} 0 & t < 0 \\ \dot{\gamma}_0 & t \geq 0 \end{cases}$

Cessation of steady shearing kinematics: $\dot{\zeta}(t) = \begin{cases} \dot{\gamma}_0 & t < 0 \\ 0 & t \ge 0 \end{cases}$

Step shear strain:
$$\dot{\varsigma}(t) = \begin{cases} 0 & t < 0 \\ \dot{\gamma}_0 & 0 \le t < \varepsilon \\ 0 & t \ge \varepsilon \end{cases}$$

Small-amplitude oscillatory shear: $\dot{\varsigma}(t) = \gamma_0 \omega \cos \omega t$

Steady elongational kinematics: $\dot{\varepsilon}(t) = \dot{\varepsilon}_0$ for all values of time t

Start-up of steady elongation kinematics: $\dot{\varepsilon}(t) = \begin{cases} 0 & t < 0 \\ \dot{\varepsilon}_0 & t \geq 0 \end{cases}$

Shear viscosity:
$$\eta = \frac{-(\tau_{21})}{\dot{\gamma}_0}$$

Shear normal stress coefficients: $\Psi_1=\frac{-(\tau_{11}-\tau_{22})}{\dot{\gamma}_0^2}$, $\Psi_2=\frac{-(\tau_{22}-\tau_{33})}{\dot{\gamma}_0^2}$

Steady elongational viscosity: $\bar{\eta} = \eta_e = \frac{-(\tau_{33} - \tau_{11})}{\dot{\varepsilon}_0}$

Step strain:
$$G = \frac{-(\tau_{21})}{\gamma_0}$$

Small-amplitude oscillatory shear: $-\tau_{21} = G' \sin \omega t + G'' \cos \omega t$

$$G' = \frac{-(\tau_0)}{\gamma_0} \cos \delta$$
 $G'' = \frac{-(\tau_0)}{\gamma_0} \sin \delta$

Table of Integrals

$$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C \qquad \alpha \text{ is a constant}$$

$$\int \frac{1}{u} du = \ln u + C$$

$$\int (\ln u) du = u \ln u - u + C$$

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$$

Miscellaneous

$$\underline{\underline{A}} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}_{123}$$

$$\frac{d}{ds}(uw) = u\frac{dw}{ds} + w\frac{du}{ds}$$

$$\underline{u} \times \underline{w} = \det \begin{vmatrix} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{pmatrix} u_2 w_3 - u_3 w_2 \\ -(u_1 w_3 - u_3 w_1) \\ u_1 w_2 - u_2 w_1 \end{pmatrix}_{123}$$

Cylindrical Coordinate System: Note that the θ -coordinate swings around the z-axis and the r-coordinate is perpendicular to the z-axis.

Spherical Coordinate System: Note that the θ -coordinate swings <u>down</u> from the **z**-axis and the **r**-coordinate emits radially from the origin to the point; these are different from their definitions in the cylindrical system above.

Cylindrical Coordinates

System	Coordinates	Basis vectors
Cylindrical	$r = \sqrt{x^2 + y^2}$	$\hat{e}_r = \cos\theta \hat{e}_x + \sin\theta \hat{e}_y$
Cylindrical	$\theta = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{e}_{\theta} = (-\sin\theta)\hat{e}_x + \cos\theta\hat{e}_y$
Cylindrical	z = z	$\hat{\boldsymbol{e}}_z = \hat{\boldsymbol{e}}_z$
Cylindrical	$x = r \cos \theta$	$\hat{e}_r = \cos\theta \hat{e}_r + (-\sin\theta) \hat{e}_\theta$
Cylindrical	$y = r \sin \theta$	$\hat{e}_y = \sin\theta \hat{e}_r + \cos\theta \hat{e}_\theta$
Cylindrical	z = z	$\hat{\boldsymbol{e}}_{z}=\hat{\boldsymbol{e}}_{z}$

Spherical Coordinates

System	Coordinates	Basis vectors
Spherical	$x = r \sin \theta \cos \phi$	$\hat{e}_x = (\sin\theta\cos\phi)\hat{e}_r + (\cos\theta\cos\phi)\hat{e}_\theta + (-\sin\phi)\hat{e}_\phi$
Spherical	$y = r \sin \theta \sin \phi$	$\hat{e}_y = (\sin\theta\sin\phi)\hat{e}_r + (\cos\theta\sin\phi)\hat{e}_\theta + \cos\phi\hat{e}_\phi$
Spherical	$z = r \cos \theta$	$\hat{e}_z = \cos\theta \ \hat{e}_r + (-\sin\theta)\hat{e}_\theta$
Spherical	$r = \sqrt{x^2 + y^2 + z^2}$	$\hat{e}_r = (\sin\theta\cos\phi)\hat{e}_x + (\sin\theta\sin\phi)\hat{e}_y + \cos\theta\hat{e}_z$
Spherical	$\theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$	$\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_x + (\cos\theta\sin\phi)\hat{e}_y + (-\sin\theta)\hat{e}_z$
Spherical	$\phi = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{e}_{\phi} = (-\sin\phi)\hat{e}_x + \cos\phi\hat{e}_y$

Coordinate system	surface differential dS
Cartesian (top, $\hat{n} = \hat{e}_z$)	dS = dxdy
Cartesian (side a, $\hat{n} = \hat{e}_y$)	dS = dxdz
Cartesian (side b, $\hat{n} = \hat{e}_x$)	dS = dydz
cylindrical (top, $\hat{n} = \hat{e}_z$) cylindrical (side, $\hat{n} = \hat{e}_r$)	$dS = rdrd\theta$ $dS = Rd\theta dz$
spherical, $(\hat{n} = \hat{e}_r)$	$dS = R^2 \sin \theta d\theta d\phi$

Coordinate system	volume differential dV
Cartesian	dV = dxdydz
cylindrical	$dV = r dr d\theta dz$
spherical	$dV = r^2 \sin \theta dr d\theta d\phi$