Exam 2 Formulas
 CM4650 Polymer Rheology Prof. Faith Morrison

Rate of deformation tensor: $\underline{\underline{\boldsymbol{\gamma}}}=\boldsymbol{\nabla} \underline{\boldsymbol{v}}+(\boldsymbol{\nabla} \underline{\boldsymbol{v}})^{T}$
Rate of deformation: $\dot{\boldsymbol{\gamma}}=|\underline{\underline{\boldsymbol{\gamma}}}|$
Tensor magnitude: $\quad \boldsymbol{A}=|\underline{\underline{A}}|=\left|\sqrt{\frac{\underline{A}: \underline{A}}{2}}\right|$
Total stress tensor: $\underline{\underline{\underline{\boldsymbol{I}}}}=\boldsymbol{p} \underline{\underline{\boldsymbol{I}}}+\underline{\underline{\boldsymbol{\tau}}}$
(Bird, UR sign convention on stress)
Shear strain: $\gamma_{21}\left(t_{a}, t_{b}\right)=\int_{t_{a}}^{t_{b}} \dot{\gamma}_{21}\left(t^{\prime \prime}\right) d t^{\prime \prime}$
(Bird, UR sign convention on stress)
Newtonian, incompressible fluid: $\quad \underline{\underline{\boldsymbol{\tau}}}=-\boldsymbol{\mu}\left(\boldsymbol{\nabla} \underline{\boldsymbol{v}}+(\boldsymbol{\nabla} \underline{\boldsymbol{v}})^{\boldsymbol{T}}\right)$

Generalized Newtonian fluid (GNF): $\underline{\underline{\boldsymbol{\tau}}}=-\boldsymbol{\eta}(\dot{\boldsymbol{\gamma}}) \underline{\underline{\boldsymbol{\gamma}}}$
Power-law GNF model: $\boldsymbol{\eta}(\dot{\boldsymbol{\gamma}})=\boldsymbol{m} \dot{\boldsymbol{\gamma}}^{\boldsymbol{n - 1}}$ (Note that m and n are parameters of the model and are constants)

Carreau-Yasuda GNF model: $\quad \boldsymbol{\eta}(\dot{\boldsymbol{\gamma}})=\boldsymbol{\eta}_{\infty}+\left(\boldsymbol{\eta}_{\mathbf{0}}-\boldsymbol{\eta}_{\infty}\right)\left[\mathbf{1}+(\dot{\boldsymbol{\gamma}} \lambda)^{\boldsymbol{a}}\right]^{\frac{n-\mathbf{1}}{a}}$
(Note that a, λ, n, η_{o}, and η_{∞} are parameters of the model and are constants)

Navier-Stokes Equation: $\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}$
Cauchy Momentum Equation:
(Bird, UR sign convention on stress)

Continuity Equation:

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \underline{v})
$$

Fluid force $\underline{\boldsymbol{F}}_{\boldsymbol{o n}}$ on a surface \mathbf{S} :
(Bird, UR sign convention on stress)

$$
\underline{F}_{o n}=\left.\iint_{S}[\widehat{\boldsymbol{n}} \cdot-\underline{\underline{\Pi}}]\right|_{\text {surface }} d S
$$

Flow rate \boldsymbol{Q} through a surface \mathbf{S} :

$$
\boldsymbol{Q}=\iint_{S}[\widehat{\boldsymbol{n}} \cdot \underline{\mathrm{v}}]_{\text {surface }} d \boldsymbol{S}
$$

Fluid torque $\underline{\boldsymbol{T}}_{\boldsymbol{o n}}$ on a surface \mathbf{S} :
($\widetilde{\boldsymbol{\widetilde { R }}}$ is the lever arm vector from the axis of rotation to the point of application of the force) (Bird, UR sign convention on stress)

$$
\underline{T}_{o n}=\iint_{S}[\underline{\widetilde{R}} \times(\widehat{\boldsymbol{n}} \cdot-\underline{\underline{\Pi}})]_{\text {surface }} d S
$$

Elongational flow: $\underline{v}=\left(\begin{array}{c}-\frac{\dot{\varepsilon}(t)}{2} x_{1} \\ -\frac{\dot{\varepsilon}(t)}{2} x_{2} \\ \dot{\varepsilon}(t) x_{3}\end{array}\right)_{123}$

$$
\text { Shear flow: } \underline{v}=\left(\begin{array}{c}
\dot{\boldsymbol{\zeta}}(\boldsymbol{t}) \boldsymbol{x}_{2} \\
0 \\
0
\end{array}\right)_{\mathbf{1 2 3}}
$$

Steady shearing kinematics: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\dot{\boldsymbol{\gamma}}_{\mathbf{0}}$ for all values of time \boldsymbol{t}
Start-up of steady shearing kinematics: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\left\{\begin{array}{cc}\mathbf{0} & \boldsymbol{t}<\mathbf{0} \\ \dot{\boldsymbol{\gamma}}_{\mathbf{0}} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$
Cessation of steady shearing kinematics: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\left\{\begin{array}{cc}\dot{\gamma}_{\mathbf{0}} & \boldsymbol{t}<\mathbf{0} \\ \mathbf{0} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$

$$
\text { Step shear strain: } \dot{\zeta}(t)=\left\{\begin{array}{cc}
0 & t<0 \\
\dot{\gamma}_{0} & 0 \leq t<\varepsilon \\
0 & t \geq \varepsilon
\end{array}\right.
$$

Small-amplitude oscillatory shear: $\dot{\varsigma}(t)=\gamma_{0} \omega \cos \omega t$
Steady elongational kinematics: $\dot{\boldsymbol{\varepsilon}}(\boldsymbol{t})=\dot{\boldsymbol{\varepsilon}}_{\boldsymbol{0}}$ for all values of time \boldsymbol{t}
Start-up of steady elongation kinematics: $\dot{\varepsilon}(\boldsymbol{t})=\left\{\begin{array}{cc}\mathbf{0} & \boldsymbol{t}<\mathbf{0} \\ \dot{\varepsilon}_{\mathbf{0}} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$

$$
\text { Shear viscosity: } \boldsymbol{\eta}=\frac{-\left(\tau_{21}\right)}{\dot{\gamma}_{0}}
$$

Shear normal stress coefficients: $\boldsymbol{\Psi}_{\mathbf{1}}=\frac{-\left(\tau_{11}-\tau_{22}\right)}{\dot{\gamma}_{0}^{2}}, \boldsymbol{\Psi}_{2}=\frac{-\left(\tau_{22}-\tau_{33}\right)}{\dot{\gamma}_{0}^{2}}$
Steady elongational viscosity: $\overline{\boldsymbol{\eta}}=\boldsymbol{\eta}_{\boldsymbol{e}}=\frac{-\left(\tau_{33}-\tau_{11}\right)}{\dot{\varepsilon}_{0}}$

$$
\text { Step strain: } \boldsymbol{G}=\frac{-\left(\tau_{21}\right)}{\gamma_{0}}
$$

Small-amplitude oscillatory shear: $-\boldsymbol{\tau}_{21}=G^{\prime} \sin \omega t+G^{\prime \prime} \cos \omega t$

$$
\boldsymbol{G}^{\prime}=\frac{-\left(\tau_{0}\right)}{\gamma_{0}} \cos \delta \quad \boldsymbol{G}^{\prime \prime}=\frac{-\left(\tau_{0}\right)}{\gamma_{0}} \sin \delta
$$

Table of Integrals

$$
\begin{gathered}
\int u^{\alpha} d u=\frac{u^{\alpha+1}}{\alpha+1}+C \quad \alpha \text { is a constant } \\
\int \frac{1}{u} d u=\ln u+C \\
\int(\ln u) d u=u \ln u-u+C \\
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
\end{gathered}
$$

Miscellaneous

$$
\begin{gathered}
\underline{A}=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)_{123} \\
\frac{d}{d s}(u w)=u \frac{d w}{d s}+w \frac{d u}{d s} \\
\underline{u} \times \underline{w}=\operatorname{det}\left|\begin{array}{lll}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left(\begin{array}{c}
u_{2} w_{3}-u_{3} w_{2} \\
-\left(u_{1} w_{3}-u_{3} w_{1}\right) \\
u_{1} w_{2}-u_{2} w_{1}
\end{array}\right)_{123}
\end{gathered}
$$

Cylindrical Coordinate System: Note that the $\boldsymbol{\theta}$-coordinate swings around the \boldsymbol{z}-axis and the \boldsymbol{r}-coordinate is perpendicular to the z -axis.

Spherical Coordinate System: Note that the $\boldsymbol{\theta}$-coordinate swings down from the \boldsymbol{z}-axis and the \boldsymbol{r}-coordinate emits radially from the origin to the point; these are different from their definitions in the cylindrical system above.

Cylindrical Coordinates

System	Coordinates	Basis vectors
Cylindrical	$r=\sqrt{x^{2}+y^{2}}$	$\hat{\boldsymbol{e}}_{r}=\cos \theta \hat{e}_{x}+\sin \theta \hat{e}_{y}$
Cylindrical	$\theta=\tan ^{-1}\left(\frac{y}{x}\right)$	$\hat{\boldsymbol{e}}_{\theta}=(-\sin \theta) \hat{\boldsymbol{e}}_{x}+\cos \theta \hat{e}_{y}$
Cylindrical	$z=z$	$\hat{e}_{z}=\hat{e}_{z}$
Cylindrical	$x=r \cos \theta$	$\hat{\boldsymbol{e}}_{x}=\cos \theta \hat{\boldsymbol{e}}_{r}+(-\sin \theta) \hat{e}_{\theta}$
Cylindrical	$y=r \sin \theta$	$\hat{e}_{y}=\sin \theta \hat{e}_{r}+\cos \theta \hat{e}_{\theta}$
Cylindrical	$z=z$	$\hat{e}_{z}=\hat{e}_{z}$

Spherical Coordinates

System	Coordinates	Basis vectors
Spherical	$x=r \sin \theta \cos \phi$	$\hat{e}_{x}=(\sin \theta \cos \phi) \hat{e}_{r}+(\cos \theta \cos \phi) \hat{e}_{\theta}+(-\sin \phi) \hat{e}_{\phi}$
Spherical	$y=r \sin \theta \sin \phi$	$\hat{e}_{y}=(\sin \theta \sin \phi) \hat{e}_{r}+(\cos \theta \sin \phi) \hat{e}_{\theta}+\cos \phi \hat{e}_{\phi}$
Spherical	$z=r \cos \theta$	$\hat{e}_{z}=\cos \theta \widehat{e}_{r}+(-\sin \theta) \hat{e}_{\theta}$
Spherical	$r=\sqrt{x^{2}+y^{2}+z^{2}}$	$\hat{e}_{r}=(\sin \theta \cos \phi) \hat{e}_{x}+(\sin \theta \sin \phi) \hat{e}_{y}+\cos \theta \hat{e}_{z}$
Spherical	$\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right)$	$\hat{\boldsymbol{e}}_{\theta}=(\cos \theta \cos \phi) \hat{e}_{x}+(\cos \theta \sin \phi) \hat{e}_{y}+(-\sin \theta) \hat{e}_{z}$
Spherical	$\phi=\tan ^{-1}\left(\frac{y}{x}\right)$	$\hat{e}_{\phi}=(-\sin \phi) \hat{e}_{x}+\cos \phi \hat{e}_{y}$

Coordinate system	surface differential $d S$
Cartesian (top, $\hat{n}=\hat{e}_{z}$)	$d S=d x d y$
Cartesian (side a, $\hat{n}=\hat{e}_{y}$)	$d S=d x d z$
Cartesian (side b, $\hat{n}=\hat{e}_{x}$)	$d S=d y d z$
cylindrical (top, $\hat{n}=\hat{e}_{z}$)	$d S=r d r d \theta$
cylindrical (side, $\hat{n}=\hat{e}_{r}$)	$d S=R d \theta d z$
spherical, $\left(\hat{n}=\hat{e}_{r}\right)$	$d S=R^{2} \sin \theta d \theta d \phi$

Coordinate system	volume differential $d V$
Cartesian	$d V=d x d y d z$
cylindrical	$d V=r d r d \theta d z$
spherical	$d V=r^{2} \sin \theta d r d \theta d \phi$

