Final Exam Formulas CM4650 Polymer Rheology Prof. Faith Morrison

Rate of deformation tensor: $\underline{\underline{\boldsymbol{\gamma}}}=\boldsymbol{\nabla} \underline{\boldsymbol{v}}+(\boldsymbol{\nabla} \underline{\boldsymbol{v}})^{T}$
Rate of deformation: $\dot{\boldsymbol{\gamma}}=|\underline{\underline{\boldsymbol{\gamma}}}|$
Tensor magnitude: $\quad \boldsymbol{A}=|\underline{\underline{\boldsymbol{A}}}|=+\sqrt{\frac{\underline{\underline{A}: \underline{\underline{A}}}}{2}}$
Total stress tensor: $\underline{\underline{\boldsymbol{\Pi}}}=\boldsymbol{p} \underline{\underline{\boldsymbol{I}}}+\underline{\underline{\boldsymbol{\tau}}}$
(Bird, UR sign convention on stress)

Shear strain: $\quad \boldsymbol{\gamma}_{\mathbf{2 1}}\left(\boldsymbol{t}_{\boldsymbol{a}}, \boldsymbol{t}_{\boldsymbol{b}}\right)=\int_{\boldsymbol{t}_{\boldsymbol{a}}}^{\boldsymbol{t}_{\boldsymbol{b}}} \dot{\boldsymbol{\gamma}}_{\mathbf{2 1}}\left(\boldsymbol{t}^{\prime \prime}\right) \boldsymbol{d} \boldsymbol{t}^{\prime \prime}$

Navier-Stokes Equation: $\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}$
Cauchy Momentum Equation: $\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}$

Continuity Equation:

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \underline{v})
$$

Fluid force $\underline{\boldsymbol{F}}$ on a surface S:

$$
\underline{F}=\left.\iint_{S}[\widehat{\boldsymbol{n}} \cdot-\underline{\underline{\Pi}}]\right|_{\text {surface }} d A
$$

Flow rate \boldsymbol{Q} through a surface S:

$$
Q=\iint_{S}[\widehat{n} \cdot \underline{v}]_{\text {surface }} d A
$$

Fluid torque $\underline{\boldsymbol{T}}$ on a surface S: $\underline{\boldsymbol{R}}$ is the vector from the axis of rotation to the point of application of the force)

$$
\underline{T}=\iint_{S}[\underline{R} \times(\widehat{\boldsymbol{n}} \cdot-\underline{\underline{\Pi}})]_{\text {surface }} d \boldsymbol{A}
$$

Newtonian, incompressible fluid: $\quad \underline{\underline{\boldsymbol{\tau}}}=-\boldsymbol{\mu}\left(\boldsymbol{\nabla} \underline{\boldsymbol{v}}+(\boldsymbol{\nabla} \underline{\boldsymbol{v}})^{\boldsymbol{T}}\right)$

Hookean solid (small strain): $\underline{\underline{\boldsymbol{\tau}}}=-\boldsymbol{G} \underline{\underline{\boldsymbol{\gamma}}}\left(\boldsymbol{t}, \boldsymbol{t}^{\prime}\right)$

Generalized Newtonian fluid (GNF): $\underline{\underline{\boldsymbol{\tau}}}=-\boldsymbol{\eta}(\dot{\boldsymbol{\gamma}}) \underline{\underline{\boldsymbol{\gamma}}}$
Power-law GNF model: $\boldsymbol{\eta}(\dot{\boldsymbol{\gamma}})=\boldsymbol{m} \dot{\boldsymbol{\gamma}}^{\boldsymbol{n}-\mathbf{1}}$
(Note that m and n are parameters of the model and are constants)
Carreau-Yasuda GNF model: $\quad \boldsymbol{\eta}(\dot{\boldsymbol{\gamma}})=\boldsymbol{\eta}_{\infty}+\left(\boldsymbol{\eta}_{\mathbf{0}}-\boldsymbol{\eta}_{\infty}\right)\left[\mathbf{1}+(\dot{\boldsymbol{\gamma}} \lambda)^{\boldsymbol{a}}\right]^{\frac{n-1}{a}}$
(Note that a, λ and n, η_{o}, and η_{∞} are parameters of the model and are constants)

Generalized Linear Viscoelastic Model (GLVE) (rate version): $\underline{\underline{\boldsymbol{\tau}}}(\boldsymbol{t})=-\int_{-\infty}^{\boldsymbol{t}} \boldsymbol{G}\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right) \underline{\underline{\boldsymbol{\gamma}}}\left(\boldsymbol{t}^{\prime}\right) \boldsymbol{d} \boldsymbol{t}^{\prime}$
Generalized Linear Viscoelastic Model (GLVE) (strain version) : $\underline{\underline{\boldsymbol{\tau}}}(\boldsymbol{t})=+\int_{-\infty}^{\boldsymbol{t}} \frac{\partial \boldsymbol{G}\left(\boldsymbol{t} \boldsymbol{-} \boldsymbol{t}^{\prime}\right)}{\boldsymbol{\partial} \boldsymbol{t}^{\prime}} \boldsymbol{\underline { \boldsymbol { \gamma } }}\left(\boldsymbol{t}, \boldsymbol{t}^{\prime}\right) \boldsymbol{d} \boldsymbol{t}^{\prime}$
Maxwell GLVE model relaxation function: $\boldsymbol{G}\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right)=\frac{\eta_{0}}{\lambda} \boldsymbol{e}^{-\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right) / \boldsymbol{\lambda}}$
Generalized Maxwell GLVE model relaxation function: $\boldsymbol{G}\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right)=\sum_{\boldsymbol{k}=1}^{N} \frac{\eta_{k}}{\lambda_{\boldsymbol{k}}} \boldsymbol{e}^{-\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right) / \lambda_{k}}$

Lodge Model or Upper Convected Maxwell: $\quad \underline{\underline{\boldsymbol{\tau}}}(\boldsymbol{t})=-\int_{-\infty}^{\boldsymbol{t}} \frac{\eta_{0}}{\lambda^{2}} e^{\frac{-\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right)}{\lambda}} \underline{\underline{\boldsymbol{C}}}^{-\mathbf{1}}\left(\boldsymbol{t}^{\prime}, \boldsymbol{t}\right) d \boldsymbol{t}^{\prime}$
Cauchy-Maxwell Model or Lower Convected Maxwell: $\quad \underline{\underline{\boldsymbol{\tau}}}(\boldsymbol{t})=+\int_{-\infty}^{\boldsymbol{t}} \frac{\boldsymbol{\eta}_{0}}{\lambda^{2}} \boldsymbol{e}^{\frac{-(\boldsymbol{t}-\boldsymbol{t})}{\lambda}} \underline{\underline{\boldsymbol{C}}}\left(\boldsymbol{t}, \boldsymbol{t}^{\prime}\right) \boldsymbol{d} \boldsymbol{t}^{\prime}$

Elongational flow (uniaxial, biaxial): $\underline{v}=\left(\begin{array}{c}-\frac{\dot{\varepsilon}(t)}{2} x_{1} \\ -\frac{\dot{\varepsilon}(t)}{2} x_{2} \\ \dot{\varepsilon}(t)\end{array} x_{3}\right)_{123}$
Shear flow: $\underline{v}=\left(\begin{array}{c}\dot{\boldsymbol{c}}(t) \boldsymbol{x}_{2} \\ 0 \\ 0\end{array}\right)_{123}$

Steady shearing kinematics: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\dot{\boldsymbol{\gamma}}_{\mathbf{0}}$ for all values of time \boldsymbol{t}
Start-up of steady shearing kinematics: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\left\{\begin{array}{cc}\mathbf{0} & \boldsymbol{t}<\mathbf{0} \\ \dot{\boldsymbol{\gamma}}_{\mathbf{0}} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$
Cessation of steady shearing kinematics: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\left\{\begin{array}{cc}\dot{\gamma}_{\mathbf{0}} & \boldsymbol{t}<\mathbf{0} \\ \mathbf{0} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$
Small-amplitude oscillatory shear: $\dot{\boldsymbol{\zeta}}(\boldsymbol{t})=\gamma_{0} \omega \boldsymbol{\operatorname { c o s }} \omega \boldsymbol{t}$
Step shear strain kinematics: $\dot{\boldsymbol{\varsigma}}(\boldsymbol{t})=\boldsymbol{\operatorname { l i m }}_{\boldsymbol{\epsilon} \rightarrow \mathbf{0}}\left\{\begin{array}{cc}\mathbf{0} & \boldsymbol{t}<\mathbf{0} \\ \boldsymbol{\gamma}_{\mathbf{0}} / \boldsymbol{\epsilon} & \mathbf{0} \leq \boldsymbol{t}<\boldsymbol{\epsilon} \\ \mathbf{0} & \mathbf{0} \leq \boldsymbol{t}\end{array}\right.$
Steady elongational kinematics: $\dot{\boldsymbol{\varepsilon}}(\boldsymbol{t})=\dot{\boldsymbol{\varepsilon}}_{\mathbf{0}}$
Start-up of steady elongation kinematics: $\dot{\boldsymbol{\varepsilon}}(\boldsymbol{t})=\left\{\begin{array}{cc}\mathbf{0} & \boldsymbol{t}<\mathbf{0} \\ \dot{\varepsilon}_{\mathbf{0}} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$
Cessation of steady elongation kinematics: $\dot{\boldsymbol{\varepsilon}}(\boldsymbol{t})=\left\{\begin{array}{cc}\dot{\varepsilon}_{\mathbf{0}} & \boldsymbol{t}<\mathbf{0} \\ \mathbf{0} & \boldsymbol{t} \geq \mathbf{0}\end{array}\right.$

$$
\text { Shear viscosity: } \boldsymbol{\eta}=\frac{-\left(\tau_{21}\right)}{\dot{\gamma}_{0}}
$$

Shear normal stress coefficients: $\boldsymbol{\Psi}_{\mathbf{1}}=\frac{-\left(\boldsymbol{\tau}_{11}-\boldsymbol{\tau}_{22}\right)}{\dot{\gamma}_{0}^{2}}, \boldsymbol{\Psi}_{2}=\frac{-\left(\tau_{22}-\tau_{33}\right)}{\dot{\gamma}_{0}^{2}}$
Shear relaxation modulus (step shear strain): $\boldsymbol{G}\left(\boldsymbol{t}, \boldsymbol{\gamma}_{\mathbf{0}}\right)=\frac{-\boldsymbol{\tau}_{21}(\boldsymbol{t})}{\boldsymbol{\gamma}_{0}}$
Small-amplitude oscillatory shear: $-\boldsymbol{\tau}_{21}=G^{\prime} \sin \omega t+G^{\prime \prime} \cos \omega t$

$$
\boldsymbol{G}^{\prime}=\frac{-\left(\tau_{0}\right)}{\gamma_{0}} \cos \delta \quad \boldsymbol{G}^{\prime \prime}=\frac{-\left(\tau_{0}\right)}{\gamma_{0}} \sin \delta
$$

Elongational viscosity: $\overline{\boldsymbol{\eta}}=\boldsymbol{\eta}_{\boldsymbol{e}}=\frac{-\left(\tau_{33}-\boldsymbol{\tau}_{11}\right)}{\dot{\varepsilon}_{0}}$

Cylindrical Coordinate System: Note that the $\boldsymbol{\theta}$-coordinate swings around the \boldsymbol{z}-axis and the \boldsymbol{r}-coordinate is perpendicular to the z -axis.

Spherical Coordinate System: Note that the $\boldsymbol{\theta}$-coordinate swings down from the \boldsymbol{z}-axis and the \boldsymbol{r}-coordinate emits radially from the origin; these are different from their definitions in the cylindrical system above.

System	Coordinates	Basis vectors
Spherical	$x=r \sin \theta \cos \phi$	$\hat{e}_{r}=(\sin \theta \cos \phi) \hat{e}_{x}+(\sin \theta \sin \phi) \hat{e}_{y}+\cos \theta \hat{e}_{z}$
Spherical	$y=r \sin \theta \sin \phi$	$\hat{\boldsymbol{e}}_{\boldsymbol{\theta}}=(\cos \theta \cos \phi) \hat{\boldsymbol{e}}_{x}+(\cos \theta \sin \phi) \hat{\boldsymbol{e}}_{y}+(-\sin \theta) \hat{\boldsymbol{e}}_{z}$
Spherical	$z=r \cos \theta$	$\hat{\boldsymbol{e}}_{\phi}=(-\sin \phi) \hat{e}_{x}+\cos \phi \hat{e}_{y}$
Cylindrical	$x=r \cos \theta$	$\hat{\boldsymbol{e}}_{r}=\cos \theta \hat{\boldsymbol{e}}_{\boldsymbol{x}}+\sin \theta \hat{\boldsymbol{e}}_{\boldsymbol{y}}$
Cylindrical	$y=r \sin \theta$	$\hat{\boldsymbol{e}}_{\boldsymbol{\theta}}=(-\sin \theta) \hat{\boldsymbol{e}}_{\boldsymbol{x}}+\cos \theta \hat{\boldsymbol{e}}_{\boldsymbol{y}}$
Cylindrical	$z=\mathbf{z}$	$\hat{\boldsymbol{e}}_{\mathbf{Z}}=\hat{\boldsymbol{e}}_{\mathbf{Z}}$

Differential Areas and Volumes

Coordinate system	Surface Differential $\boldsymbol{d} \boldsymbol{S}$
Cartesian (top, $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{e}}_{\boldsymbol{Z}}$)	$\boldsymbol{d} \boldsymbol{S}=\boldsymbol{d} \boldsymbol{x} \boldsymbol{d} \boldsymbol{y}$
Cartesian (top, $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{e}}_{\boldsymbol{y}}$)	$\boldsymbol{d} \boldsymbol{S}=\boldsymbol{S}=\boldsymbol{x} \boldsymbol{d z}$
Cartesian (top, $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{e}}_{\boldsymbol{x}}$)	$\boldsymbol{d S}=\boldsymbol{S} \boldsymbol{y} \boldsymbol{d z}$
Cylindrical (top, $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{e}}_{\boldsymbol{Z}}$)	$\boldsymbol{d} \boldsymbol{S}=\boldsymbol{r} \boldsymbol{d} \boldsymbol{r} \boldsymbol{d} \boldsymbol{\theta}$
Cylindrical (side, $\widehat{\boldsymbol{n}}=\widehat{\boldsymbol{e}}_{\boldsymbol{r}}$)	$\boldsymbol{d} \boldsymbol{S}=\boldsymbol{R} \boldsymbol{d} \boldsymbol{\theta} \boldsymbol{d} \boldsymbol{z}$
Spherical (at $r=R, \widehat{\boldsymbol{n}}=\widehat{\boldsymbol{e}}_{\boldsymbol{r}}$)	$\boldsymbol{d} \boldsymbol{S}=\boldsymbol{R}^{\mathbf{2}} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \boldsymbol{d} \boldsymbol{\theta} \boldsymbol{d} \boldsymbol{\phi}$

Coordinate system	Volume Differential $\boldsymbol{d V}$
Cartesian	$\boldsymbol{d V}=\boldsymbol{d} \boldsymbol{x d y d z}$
Cylindrical	$\boldsymbol{d V}=\boldsymbol{r d r d \theta d z}$
Spherical	$\boldsymbol{d V}=\boldsymbol{r}^{2} \sin \boldsymbol{\theta} \boldsymbol{d r d \theta d} \boldsymbol{\phi}$

Tensor Invariants (p40)

$$
\begin{gathered}
\mathrm{I}_{\underline{\underline{B}}} \equiv \sum_{\mathrm{i}=1}^{3} B_{i i}=\operatorname{trace}(\underline{\underline{B}}) \\
\mathrm{II}_{\underline{\underline{B}}} \equiv \sum_{\mathrm{i}=1}^{3} \sum_{j=1}^{3} B_{i j} B_{j i}=\operatorname{trace}(\underline{\underline{B}} \cdot \underline{\underline{B}}) \\
\mathrm{III}_{\underline{\underline{B}}} \equiv \sum_{\mathrm{i}=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} B_{i j} B_{j k} B_{k i}=\operatorname{trace}(\underline{\underline{B}} \cdot \underline{\underline{B}} \cdot \underline{\underline{B}})
\end{gathered}
$$

Note that $|\underline{\underline{\boldsymbol{B}}}|=+\sqrt{\frac{I_{\underline{\underline{B}}}}{2}}$

Table of Integrals

$$
\begin{gathered}
\int u^{\alpha} d u=\frac{u^{\alpha+1}}{\alpha+1}+C \quad \alpha \text { is a constant } \\
\int \frac{1}{u} d u=\ln u+C \\
\int(\ln u) d u=u \ln u-u+C \\
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
\end{gathered}
$$

$$
\begin{gathered}
\int e^{u} d u=e^{u}+C \\
\int u e^{u} d u=e^{u}(u-1)+C \\
\int u^{2} e^{u} d u=e^{u}\left(u^{2}-2 u+2\right)+C
\end{gathered}
$$

$$
\begin{gathered}
\int \cos (u) d u=\sin (u)+C \\
\int \sin (u) d u=-\cos (u)+C \\
\int u \cos (u) d u=u \sin (u)+\cos (u)+C \\
\int u \sin (u) d u=\sin (u)-u \cos (u)+C
\end{gathered}
$$

Miscellaneous

$$
\begin{gathered}
\underline{A}=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)_{123} \\
\frac{d}{d s}(u w)=u \frac{d w}{d s}+w \frac{d u}{d s} \\
\underline{u} \times \underline{w}=\operatorname{det}\left|\begin{array}{lll}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\left(\begin{array}{c}
u_{2} w_{3}-u_{3} w_{2} \\
-\left(u_{1} w_{3}-u_{3} w_{1}\right) \\
u_{1} w_{2}-u_{2} w_{1}
\end{array}\right)_{123}
\end{gathered}
$$

