Final Exam Formulas

CM4650 Polymer Rheology Prof. Faith Morrison

Rate of deformation tensor: $\underline{\dot{y}} = \nabla \underline{v} + (\nabla \underline{v})^T$

Rate of deformation: $\dot{\gamma} = \left| \underline{\dot{\gamma}} \right|$

Tensor magnitude: $A = \left| \underline{\underline{A}} \right| = + \sqrt{\frac{\underline{\underline{A}} : \underline{\underline{A}}}{2}}$

Total stress tensor: $\underline{\underline{\Pi}} = p\underline{\underline{I}} + \underline{\underline{\tau}}$ (Bird, UR sign convention on stress)

Shear strain: $\gamma_{21}(t_a, t_b) = \int_{t_a}^{t_b} \dot{\gamma}_{21}(t'') dt''$

Navier-Stokes Equation: $\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = -\nabla p + \mu \nabla^2 \underline{v} + \rho \underline{g}$

Cauchy Momentum Equation: $\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = -\nabla p - \nabla \cdot \underline{\underline{\tau}} + \rho \underline{g}$

Continuity Equation: $\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \underline{v})$

Fluid force \underline{F} on a surface S:

$$\underline{F} = \iint_{S} \left[\widehat{n} \cdot -\underline{\underline{\Pi}} \right] \Big|_{surface} dA$$

Flow rate **Q** through a surface S:

$$Q = \iint\limits_{S} [\widehat{n} \cdot \underline{v}]_{surface} dA$$

Fluid torque $\underline{\textbf{\textit{T}}}$ on a surface S: $\underline{(\textbf{\textit{R}})}$ is the vector from the axis of rotation to the point of application of the force)

$$\underline{T} = \iint_{S} \left[\underline{R} \times (\widehat{n} \cdot - \underline{\underline{\Pi}}) \right]_{surface} dA$$

Newtonian, incompressible fluid: $\underline{\underline{\tau}} = -\mu(\nabla \underline{v} + (\nabla \underline{v})^T)$

Hookean solid (small strain): $\underline{\underline{\tau}} = -G\gamma(t, t')$

Generalized Newtonian fluid (GNF): $\underline{\underline{\tau}} = -\eta(\dot{\gamma})\dot{\underline{\gamma}}$

Power-law GNF model: $\eta(\dot{\gamma}) = m\dot{\gamma}^{n-1}$ (Note that m and n are parameters of the model and are constants)

Carreau-Yasuda GNF model: $\eta(\dot{\gamma}) = \eta_{\infty} + (\eta_0 - \eta_{\infty})[1 + (\dot{\gamma}\lambda)^a]^{\frac{n-1}{a}}$ (Note that a, λ and η_{∞} are parameters of the model and are constants)

Generalized Linear Viscoelastic Model (GLVE) (rate version): $\underline{\underline{\tau}}(t) = -\int_{-\infty}^{t} G(t-t')\underline{\dot{\gamma}}(t')dt'$

Generalized Linear Viscoelastic Model (GLVE) (strain version): $\underline{\underline{\tau}}(t) = + \int_{-\infty}^{t} \frac{\partial G(t-t')}{\partial t'} \underline{\underline{\gamma}}(t,t') dt'$

Maxwell GLVE model relaxation function: $G(t - t') = \frac{\eta_0}{\lambda} e^{-(t - t')/\lambda}$

Generalized Maxwell GLVE model relaxation function: $G(t-t') = \sum_{k=1}^{N} \frac{\eta_k}{\lambda_k} e^{-(t-t')/\lambda_k}$

Lodge Model or Upper Convected Maxwell: $\underline{\underline{\tau}}(t) = -\int_{-\infty}^{t} \frac{\eta_0}{\lambda^2} e^{\frac{-(t-t')}{\lambda}} \underline{\underline{C}}^{-1}(t',t) dt'$

Cauchy-Maxwell Model or Lower Convected Maxwell: $\underline{\underline{\tau}}(t) = + \int_{-\infty}^{t} \frac{\eta_0}{\lambda^2} e^{\frac{-(t-t')}{\lambda}} \underline{\underline{C}}(t,t') dt'$

Elongational flow (uniaxial, biaxial):
$$\underline{v} = \begin{pmatrix} -\frac{\dot{\varepsilon}(t)}{2} x_1 \\ -\frac{\dot{\varepsilon}(t)}{2} x_2 \\ \dot{\varepsilon}(t) x_3 \end{pmatrix}_{123}$$
 Shear flow:
$$\underline{v} = \begin{pmatrix} \dot{\varsigma}(t) x_2 \\ 0 \\ 0 \end{pmatrix}_{123}$$

Steady shearing kinematics: $\dot{\varsigma}(t) = \dot{\gamma}_0$ for all values of time t

Start-up of steady shearing kinematics:
$$\dot{\varsigma}(t) = \begin{cases} 0 & t < 0 \\ \dot{\gamma}_0 & t \geq 0 \end{cases}$$

Cessation of steady shearing kinematics:
$$\dot{\varsigma}(t) = \begin{cases} \dot{\gamma}_0 & t < 0 \\ 0 & t \ge 0 \end{cases}$$

Small-amplitude oscillatory shear:
$$\dot{\varsigma}(t) = \gamma_0 \omega \cos \omega t$$

Step shear strain kinematics:
$$\dot{\varsigma}(t) = \lim_{\epsilon \to 0} \begin{cases} 0 & t < 0 \\ \gamma_0/\epsilon & 0 \le t < \epsilon \\ 0 & 0 \le t \end{cases}$$

Steady elongational kinematics:
$$\dot{\varepsilon}(t) = \dot{\varepsilon}_0$$

Start-up of steady elongation kinematics:
$$\dot{\varepsilon}(t) = \begin{cases} 0 & t < 0 \\ \dot{\varepsilon}_0 & t \geq 0 \end{cases}$$

Cessation of steady elongation kinematics:
$$\dot{\varepsilon}(t) = \begin{cases} \dot{\varepsilon}_0 & t < 0 \\ 0 & t \ge 0 \end{cases}$$

Shear viscosity:
$$\eta = \frac{-(\tau_{21})}{\dot{r}_0}$$

Shear normal stress coefficients:
$$\Psi_1 = \frac{-(\tau_{11} - \tau_{22})}{\dot{\gamma}_0^2}$$
, $\Psi_2 = \frac{-(\tau_{22} - \tau_{33})}{\dot{\gamma}_0^2}$

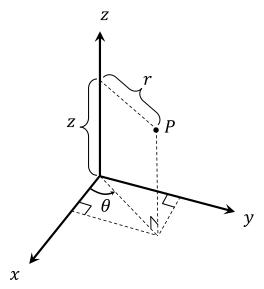
Shear relaxation modulus (step shear strain):
$$G(t, \gamma_0) = \frac{-\tau_{21}(t)}{\gamma_0}$$

Small-amplitude oscillatory shear: $-\tau_{21} = G' \sin \omega t + G'' \cos \omega t$

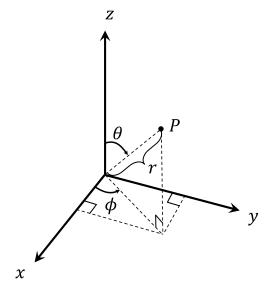
$$G' = \frac{-(\tau_0)}{\gamma_0} \cos \delta$$
 $G'' = \frac{-(\tau_0)}{\gamma_0} \sin \delta$

Elongational viscosity:
$$\bar{\eta} = \eta_e = \frac{-(\tau_{33} - \tau_{11})}{\dot{\varepsilon}_0}$$

Cylindrical Coordinate System: Note that the θ -coordinate swings around the z-axis and the r-coordinate is perpendicular to the z-axis.



Spherical Coordinate System: Note that the θ -coordinate swings down from the z-axis and the r-coordinate emits radially from the origin; these are different from their definitions in the cylindrical system above.



System	Coordinates	Basis vectors
Spherical	$x = r \sin \theta \cos \phi$	$\hat{e}_r = (\sin\theta\cos\phi)\hat{e}_x + (\sin\theta\sin\phi)\hat{e}_y + \cos\theta\hat{e}_z$
Spherical	$y = r \sin \theta \sin \phi$	$\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_{x} + (\cos\theta\sin\phi)\hat{e}_{y} + (-\sin\theta)\hat{e}_{z}$
Spherical	$z = r \cos \theta$	$\hat{e}_{\phi} = (-\sin\phi)\hat{e}_x + \cos\phi\hat{e}_y$
Cylindrical	$x = r \cos \theta$	$\hat{e}_r = \cos\theta \hat{e}_x + \sin\theta \hat{e}_y$
Cylindrical	$y = r \sin \theta$	$\hat{e}_{\theta} = (-\sin\theta)\hat{e}_x + \cos\theta\hat{e}_y$
Cylindrical	z = z	$\hat{e}_{\mathbf{z}} = \hat{e}_{\mathbf{z}}$

Differential Areas and Volumes

Coordinate system	Surface Differential dS
Cartesian (top, $\hat{\boldsymbol{n}} = \hat{\boldsymbol{e}}_{\mathbf{z}}$)	dS = dxdy
Cartesian (top, $\hat{n} = \hat{e}_y$)	dS = dxdz
Cartesian (top, $\hat{\boldsymbol{n}} = \hat{\boldsymbol{e}}_x$)	dS = dydz
Cylindrical (top, $\hat{n} = \hat{e}_z$)	$dS = rdrd\theta$
Cylindrical (side, $\hat{n} = \hat{e}_r$)	$dS = Rd\theta dz$
Spherical (at $r = R$, $\hat{n} = \hat{e}_r$)	$dS = R^2 \sin \theta d\theta d\phi$

Coordinate system	Volume Differential dV
Cartesian	dV = dxdydz
Cylindrical	$dV = rdrd\theta dz$
Spherical	$dV = r^2 \sin \theta dr d\theta d\phi$

Tensor Invariants (p40)

$$\begin{split} \mathbf{I}_{\underline{B}} &\equiv \sum_{i=1}^{3} B_{ii} = trace(\underline{\underline{B}}) \\ &\mathbf{II}_{\underline{B}} \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} B_{ij} B_{ji} = trace(\underline{\underline{B}} \cdot \underline{\underline{B}}) \\ &\mathbf{III}_{\underline{B}} \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} B_{ij} B_{jk} B_{ki} = trace(\underline{\underline{B}} \cdot \underline{\underline{B}} \cdot \underline{\underline{B}}) \end{split}$$

Note that
$$\left|\underline{\underline{B}}\right| = +\sqrt{\frac{II_{\underline{B}}}{2}}$$

Table of Integrals

$$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C \qquad \alpha \text{ is a constant}$$

$$\int \frac{1}{u} du = \ln u + C$$

$$\int (\ln u) du = u \ln u - u + C$$

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$$

$$\int e^{u}du = e^{u} + C$$

$$\int ue^{u}du = e^{u}(u-1) + C$$

$$\int u^{2}e^{u}du = e^{u}(u^{2} - 2u + 2) + C$$

$$\int \cos(u) du = \sin(u) + C$$

$$\int \sin(u) du = -\cos(u) + C$$

$$\int u \cos(u) du = u \sin(u) + \cos(u) + C$$

$$\int u \sin(u) du = \sin(u) - u \cos(u) + C$$

Miscellaneous

$$\underline{\underline{A}} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}_{123}$$

$$\frac{d}{ds}(uw) = u\frac{dw}{ds} + w\frac{du}{ds}$$

$$\underline{u} \times \underline{w} = \det \begin{vmatrix} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{pmatrix} u_2 w_3 - u_3 w_2 \\ -(u_1 w_3 - u_3 w_1) \\ u_1 w_2 - u_2 w_1 \end{pmatrix}_{123}$$