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Role of Material Functions in Rheological Analysis

unknown 
material

measure material 
functions, e.g. η, 

G'(ω), G"(w), G(t)

compare measured with predicted

conclude which constitutive equation is 
best for further modeling calculations

calculate predictions of 
material functions from 

various constitutive 
equations

compare data with 
literature reports on 

various fluids

conclude on the probable 
physical behavior of the 

fluid based on comparison 
with known fluid behavior

compare with other 
in-house data on 
qualitative basis

conclude whether or 
not a material is 
appropriate for a 

specific application

QUALITY CONTROL QUALITATIVE ANALYSIS
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We will 
focus here 

first
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Material function definitions

1.  Choice of flow (shear or elongation)
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Steady Shear Flow Material Functions

constant)( 0 == γς && t

Kinematics:
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How do we predict material functions?
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What does the Newtonian Fluid model predict in 
steady shearing?

)(vf=τ

ANSWER: From the constitutive equation.

( )[ ]Tvv ∇+∇−=−= µγµτ &

What do we measure for these 
material functions?
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Figure 6.1, p. 170 Menzes and 
Graessley conc. PB solution

Steady shear viscosity and first 
normal stress coefficient
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Steady shear viscosity and first 
normal stress coefficient
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Steady shear viscosity for linear 
and branched PDMS

Figure 6.3, p. 172 Piau et al., 
linear and branched PDMS

+ linear 131 kg/mole
branched 156 kg/mole
linear 418 kg/mol
branched 428 kg/mol
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What have material functions taught us so far?

•Newtonian constitutive equation is inadequate

1. Predicts constant shear viscosity (not always 
true)

2. Predicts no shear normal stresses (these 
stresses are generated for many fluids)

•Behavior depends on the material (chemical structure, 
molecular weight, concentration)
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Can we fix the Newtonian Constitutive Equation?

( )[ ]Tvv ∇+∇−= µτ

Let’s replace µ with 
a function of shear 
rate because we 
want to predict a 
non-constant 
viscosity in shear

( ) ( )[ ]TvvM ∇+∇−= 0γτ &

© Faith A. Morrison, Michigan Tech U.

What does this model predict for steady shear viscosity?

( ) ( )[ ]TvvM ∇+∇−= 0γτ &

Answer: ( )0γη &M=



7

© Faith A. Morrison, Michigan Tech U.

If we choose:
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Problem solved!
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But what about the normal stresses?

( ) ( )[ ]TvvM ∇+∇−= 0γτ &
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But which ones?

To sort out how to fix the Newtonian 
equation, we need more observations (to 
give us ideas).

Let’s try another material function that’s 
not a steady flow (but stick to shear).

Start-up of Steady Shear Flow Material Functions
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What does the Newtonian Fluid model predict in 
start-up of steady shearing?

( )[ ]Tvv ∇+∇−=−= µγµτ &

Again, since we know v, we can just 
plug it in and calculate the stresses.
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Material functions predicted for start-up of steady 
shearing of a Newtonian fluid
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Do these predictions 
match observations?
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Startup of Steady Shearing
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Figures 6.49, 6.50, p. 208 
Menezes and Graessley, PB soln
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What about other non-steady flows?
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Cessation of Steady Shear Flow Material Functions
Kinematics:
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Cessation of Steady Shearing
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Figures 6.51, 6.52, p. 209 Menezes 
and Graessley, PB soln
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What does the model we guessed at predict 
for start-up and cessation of shear?

( )




≥
<

= −
c

n
c

m
M

M
γγγ
γγ

γ
&&&

&&
&

0
1

0

00
0

( ) ( )[ ]TvvM ∇+∇−= 0γτ &

© Faith A. Morrison, Michigan Tech U.

Observations

•The model predicts an instantaneous stress 
response, and this is not what is observed for 
polymers

•The predicted unsteady material functions depend 
on the shear rate, which is observed for polymers

•No normal stresses are predicted

),( 0γηη &t++ =

( )




≥
<

= −
c

n
c

m
M

M
γγγ
γγ

γ
&&&

&&
&

0
1

0

00
0

( ) ( )[ ]TvvM ∇+∇−= 0γτ &

Progress here
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Observations ( )
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Lacks memory

Related to 
nonlinearities

•The model predicts an instantaneous stress 
response, and this is not what is observed for 
polymers

•The predicted unsteady material functions depend 
on the shear rate, which is observed for polymers

•No normal stresses are predicted

),( 0γηη &t++ = Progress here
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To proceed to better-designed constitutive 
equations, we need to know more about material 
behavior, i.e. we need more material functions to 
predict, and we need measurements of these 
material functions.

•More non-steady material functions (material functions 
that tell us about memory)

•Material functions that tell us about nonlinearity (strain)
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The next three families of material 
functions incorporate the concept of strain.
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Creep Shear Flow Material Functions
Kinematics:

Material Functions:

It is unusual to prescribe stress rather than

Since we set the stress in this experiment (rather than 
measuring it), the material functions are related to the 

deformation of the sample.  We need to discuss 
measurements of deformation before proceeding.

Because shear rate is not 
prescribed, it becomes 
something we must measure.
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at time tref

fluid particle
at time t

2

1
21 ),(

x
uttref ∆

∆
=γ

2P
2x∆

)( 11 Pu

)( 21 Pu

( )21 xv
1P

1u∆

1x
2x

Physical interpretation of strain in shear

The strain is the inverse of the slope of the 
side of the deformed particle.

The strain is related to the change of shape
of the deformed particle.
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Deformation  in shear flow (strain)

2

1
21 ),(

x
uttref ∂

∂
≡γ

1233

2

1

)(
)(
)(

)(
















=

ref

ref

ref

ref

tx
tx
tx

tr

1233

2

201

1233

2

1

)(
)(

)()(

)(
)(
)(

)(














 −+
=
















=

ref

ref

refref

tx
tx

xtttx

tx
tx
tx

tr
γ&

Shear strain

Displacement 
function

123

20

0
0

)(
)()(),(















 −
=−≡

xtt
trtrttu

ref

refref

γ&

© Faith A. Morrison, Michigan Tech U.


