Role of Material Functions in Rheological Analysis
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Material function definitions

CRYITHIIEYIY |

A

(1. Choice of flow (shear or elongation)

1.
s()xy ) é01+b)x, Elongational flow: b=0, £(f) >0
V= 0 v= —lé‘(t)(l -b)x, Biaxial stretching: b=0, £(¢) <0
z = 2 .
(¢ Planar elongation: b=1, £(f) >0
0 123 ()x,

123

\_2. Choice of details of c(t) or £(1).

3. Material functions definitions: will be based on
T,, N;, N, inshearor 7Ty; — 7, T, — 7,

in elongational flows.
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Steady Shear Flow Material Functions

Kinematics:
c(x . _
v=| 0 ¢(f) = y¢ = constant
0

123

Material Functions:

First normal-stress Y, = — (Tll — 2'22)

Ty coefficient B 73
n= _}/
0
— (722 ~ 733)
. . Second normal- ¥, =
Viscosity stress coefficient ]/g
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How do we predict material functions?

ANSWER: From the constitutive equation.

=f(v)

I

What does the Newtonian Fluid model predict in
steady shearing?

£=—uy =V + (VoY |
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What do we measure for these
material functions?
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Steady shear viscosity and first
normal stress coefficient
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Steady shear viscosity for linear

and branched PDMS
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What have material functions taught us so far?

*Newtonian constitutive equation is inadequate

1. Predicts constant shear viscosity (not always
true)

2. Predicts no shear normal stresses (these
stresses are generated for many fluids)

*Behavior depends on the material (chemical structure,
molecular weight, concentration)
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Can we fix the Newtonian Constitutive Equation?

z=—pVu+ (Vo) |

Let’s replace pu with

a function of shear

rate because ‘We T= _M(770 )[V\_/ n (V\_/)T]
want to predict a

non-constant

viscosity in shear
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What does this model predict for steady shear viscosity?

£ =-M(p, e+ (Vo) |

Answer: n = M(yo)
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If we choose: M, Vo <7
M(J/O = . n—1 5 >
my, Vo=V
logn
: slope = (n-1)
|
1
1
1
e logy,

Problem solved!
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But what about the normal stresses?

£ =M (7, \Vu+ (Vo) ]

0O 0 O 0 7, 0 It appears that z
) ) should not be
V=7, 0 0 Y=17 0 0 simply proportional
to 7
0 0 0 s 0 0 O s 0z
Try something else . .. Z=—#Z+Lf(®)

z=f() Vv (VV)T
=4 [Vv. (W) ]+ BVv+C(Vv)
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But which ones?

To sort out how to fix the Newtonian
equation, we need more observations (to
give us ideas).

Let’s try another material function that’s
not a steady flow (but stick to shear).
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Start-up of Steady Shear Flow Material Functions

Kinematics:
~(H)x
S0 , 0 <0
v=| 0 s)=1.
0 7o t20
123
Material Functions:
First normal-stress \py+ _ (Tll — 2'22)
—7r. (1 growth function ~1 -2
+ = 21( ) 7/ 0
Yo
Second normal- +_ = (722 - T33)
Shear stress ) S
th stress growth 72
gI'OW. function 0
function
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What does the Newtonian Fluid model predict in
start-up of steady shearing?

T=—uy= —,u[VM—i— (VyK)T]

Again, since we know ¥, we can just )

plug it in and calculate the stresses.
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Material functions predicted for start-up of steady
shearing of a Newtonian fluid

()
vy |0 1< ! [
= t>0 T
- (z' -7 ) {
lP1+ = 11-2 22) _ 0
Yo
Do these predictions
P = (722 - 733) —0 match observations?
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Startup of Steady Shearing

7* (¥, 1), poise

Figures 6.49, 6.50, p. 208
Menezes and Graessley, PB soln

SOR Short Course Beginning Rheology © Faith A. Morrison, Michigan Tech U.

What about other non-steady flows?
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Cessation of Steady Shear Flow Material Functions

Kinematics:
-(f)x .
c(O)x; . 7, t<0
v= 0 c(t)=
0 0 (>0
123
Material Functions:

First normal-stress \yy— _ (Tll — Tzz)

=T, decay function ~1 .2

n = 21( ) 7o

7o

Second normal- - _ (722 — 733 )
Shear stress ) S

decay function stress decay ]}2

function 0
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What does the model we guessed at predict
for start-up and cessation of shear?

£ =-M(7, )+ (V) ]

) MO 770<7c
(7/0)_ . n—1 5 >
my, Vo=V
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£ =M (p, u+ (Vo) |

MO 70<7L'

mye” 7,27,

M(y'o):{

Observations

*The model predicts an instantaneous stress
response, and this is not what is observed for

polymers

*The predicted unsteady material functions depend
on the shear rate, which is observed for polymers

n"=n"(t,y,) <= Progress here

*No normal stresses are predicted
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Observations

*The model predicts an instantaneous stress
response, and this is not what is observed for
polymers <4mmm [acks memory

*The predicted unsteady material functions depend
on the shear rate, which is observed for polymers

77+ = 77+ (t,7,) <mmmm Progress here

*No normal stresses are predicted <4msmm Related to
nonlinearities
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To proceed to better-designed constitutive
equations, we need to know more about material
behavior, i.e. we need more material functions to
predict, and we need measurements of these
material functions.

*More non-steady material functions (material functions
that tell us about memory)

*Material functions that tell us about nonlinearity (strain)
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Summary of shear rate kinematics (part 1)

g(f) 7’21(0,t) 121(f)
T ; t
a. Steady 7o ! %
' . . ' .
0 t 0 t 0 t
g(t) 721(0,f) Tz](t)
b. Stress ; 7o 7~
Growth f _ _ /
0 t 0 t 0 t
g(f) 7’21(0,t) 721(f)
c. Stress Rl
Relaxation 7° 0
t
0 t 0 t
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The next three families of material
functions incorporate the concept of strain.
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Summary of shear rate kinematics (part 2)

0 M_____ 721 0.1) 0]
d. Creep ——
/ - +
0 t 0 t 0 t
¢0) 721 0.0) 0]
e. Step f
Strain iﬂ

&

a0

f. SAOS C 7, coswt
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Shear Creep Flow

Constant shear stress imposed

samples
g/

g

[ i

-

-

_J

oven

MASS
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Because shear rate is not
prescribed, it becomes

something we must measure.  Creep Shear Flow Material Functions

Kinematics:

It is unusual to prescribe stress rather than ¢ (1)

0 <0

7, t=0

123

Material Functions:

Since we set the stress in this experiment (rather than
measuring it), the material functions are related to the
deformation of the sample. We need to discuss
measurements of deformation before proceeding.
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Deformation (strain)

K(tref) =

r(t) =

_ Ou, .
¥21(8,>t) =—— Shear strain
ox

2
%, (er) u(t, ,t)=r(t)—r(,,) Displacement
X, (l‘ref) function
X3 (tref) 3
w0
x,(2) 123 particle path o PO un) PG

X7
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Physical interpretation of strain in shear

fluid particle 721(Lep 1) = Ay
at time Zrer NS\
N

The strain is the inverse of the slope of the
side of the deformed particle.

The strain is related to the change of shape
of the deformed particle.
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Deformation in shear flow (strain)

X, () y
K(trgf) =1 X% (trgf) }/21(tref’t) = a_xl Shear strain

2
x3 (tref) 123

x,(7) X (Lo )+ (=1, )7 0%,
r)=|x@)| = Xy (tref)
'x3 (t) 123 'x3 (tref ) 123
(t - lrej')70x2 Displ
_ isplacement
Z(tref > t) = K(t) - K(tref) = 0 function

0

123
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