Small-Amplitude Oscillatory Shear Material Functions

Kinematics:
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What is the strain in this flow?
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The strain 7,

amplitude is %y = @
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Generating Small Amplitude Oscillatory Shear (SAOS)
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In SAOS the strain amplitude is small, and a
sinusoidal imposed strain induces a
sinusoidal measured stress.

—T2l(l) =17 Sil’l(a)t + 5)

—TZI(t) =17 Sil’l(d)f + 5)
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d is the phase difference between
37 the stress wave and the strain wave
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SAOS Material Functions
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g ¢ )
For Newtonian fluids, stress is proportional to strain rate:| 7y = —,Ll}721

”. . .
G’is thus known as the viscous loss modulus. It characterizes the
viscous contribution to the stress response.
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What types of materials generate stress in proportion
to the strain imposed? Answer: elastic solids

Hooke’s Law for elastic solids |75 =G}

initial state,

X
no flow. 1 | initi
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%/—/ spring restoring force Hooke's law for

Hooke's law for linear springs

elastic solids

© Faith A. Morrison, Michigan Tech U.

SAOS Material Functions

—Ty() | 7ycoso | . T,sin o
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G k G

For Hookean solids, stress is proportional to strain : |7y = —G}/21

G'is thus known as the elastic storage modulus. It characterizes the
elastic contribution to the stress response.

(note: SAOS material functions may also be expressed in
complex notation. See pp. 156-159 of Morrison, 2001)
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Steady Elongational Flow Material Functions

Kinematics:

—lé‘(t)(1+b)x 5 5
2 1 £(t) = & = constant
1.
v= —Eé‘(t)(l—b)x2

) Elongational flow: b=0, £(f) >0
E(t)x,

Biaxial stretching: b=0, &(t) <0
123 Planar elongation: b=1, £(f) > 0

Material Functions:

- = p _—(733—711) = _—(722—711)
& &
Uniaxial or Biaxial or First Planar Second Planar
Elongational Viscosity Elongational Viscosity
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What is the strain in this flow?  Hencky strain
t L 4
Eltyof 1) = J; ) &()dt (choose 1,,,=0)

=&t The strain imposed is
0 proportional to time.

) The ratio of current
=In— length to initial length is
lo exponential in time.
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Both tension
thinning and
thickening are
observed.

Figure 6.60, p. 215
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Trouton ratio: Tr =

The other elongational experiments are
analogous to shear experiments (see rext)

Elongational stress growth

Elongational stress cessation (nearly impossible)
Elongational creep

Step elongational strain

Small-amplitude Oscillatory Elongation (SAOE)
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Figure 6.64, p. 218
Start-up of Kurzbeck et al.; PP
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