Experimental Data (continues)

Unsteady shear flow
-Small strain - SAOS, step strain
linear polymers, material effects, temperature effects
-Large strain - start-up, cessation, creep, largeamplitude step strain
later. ..
Steady elongation
Unsteady elongation

Small-Amplitude Oscillatory Shear Storage and Loss Moduli

Small-Amplitude Oscillatory Shear - Storage and Loss Moduli

Figure 6.30, p. 192 Plazek and O'Rourke; PS

Step Shear Strain - Relaxation Modulus

Figure 6.31, p. 192 Plazek and O'Rourke; PS

Key to Ferry's plots

I. Dilute polymer solutions: atactic polystyrene, $0.015 \mathrm{~g} / \mathrm{ml}$ in Aroclor 1248, a chlorinated diphenyl with viscosity 2.47 poise at $25^{\circ} \mathrm{C} . \mathrm{M}_{\mathrm{w}}=86,000, \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ near 1.
II. Amorphous polymer of low molecular weight: poly(vinyl acetate), $\mathrm{M}=10,500$, fractionated.
III. Amorphous polymer of high molecular weight: atactic polystyrene, narrow MW distribution, $\mathrm{M}_{\mathrm{w}}=600,000$.
IV. Amorphous polymer of high molecular weight with long side groups: fractionated poly(n-octyl methacrylate), $\mathrm{M}_{\mathrm{w}}=3.62 \times 10^{6}$.
V. Amorphous polymer of high molecular weight below its glass transition temperature: poly(methyl methacrylate).
VI. Lightly cross-linked amorphous polymer: lightly vulcanized Hevea rubber.
VII. Very lightly cross-linked amorphous polymer: styrene butadiene random copolymer, 23.5% styrene by weight.
VII. Highly crystalline polymer: linear polyethylene.

Ferry's Summary of Viscoelastic properties of several classes of polymers

Loss modulus

Figure2-4 from Ferry,
Viscoelastic Properties of
Polymers, Wiley, 1980

Ferry's Summary of Viscoelastic properties of several classes of polymers

> Relaxation modulus

Ferry's Summary of Viscoelastic properties of several classes of polymers

Figure2-8 from Ferry,

Cox-Merz Rule
 $$
\eta(\dot{\gamma})=\left|\eta^{*}(\omega)\right|_{\dot{\gamma}=\omega}
$$

An empirical way to infer steady shear data from SAOS data.

Figure 6.32, p. 193
Venkataraman et al.; LDPE

Small-Amplitude Oscillatory Shear - G^{\prime} molecular weight dependence

Figure 6.34, p. 195 Onogi et al; narrow MWD PS

Small-Amplitude Oscillatory Shear - G" molecular weight dependence

All materials show terminal behavior

Figure 6.36, p. 196 Onogi et al;
narrow MWD PS

Small-Amplitude Oscillatory Shear - G^{\prime} as a function of temperature for copolymers

Figure 6.39, p. 198 Cooper and
Tobolsky; SIS block and SBS random

