

In general,

$$G' = G'(\omega\lambda_1(T), \omega\lambda_2(T), \omega\lambda_3(T), \dots)$$

Suppose that the temperature-dependence of λ_i could be factored out. Let $a_{Ti}(T)$ be the temperature-dependence of λ_i .

$$\lambda_i(T) = a_{Ti}(T) \tilde{\lambda}_i$$
 not a function of temperature

Then we could <u>group</u> the temperature-dependence function with the frequency.

$$G' = G'(a_{T1}\omega\lambda_1, a_{T2}\omega\lambda_2, a_{T3}\omega\lambda_3, \dots)$$

© Faith A. Morrison, Michigan Tech U.

Second theoretical result: the
$$g_i$$
 enter
into the functions for G', G'' such that $T\rho$ can
be factored out of the function
$$\frac{G'}{T\rho} = \tilde{f}(a_T\omega, \tilde{\lambda}_i)$$
Therefore if we plot reduced variables, we can suppress
all of the temperature dependence of the moduli.
$$G'_r = \frac{G'(T)T_{ref}\rho_{ref}}{T\rho} = f(a_T\omega, \tilde{\lambda}_i)$$
$$G''_r = \frac{G''(T)T_{ref}\rho_{ref}}{T\rho} = h(a_T\omega, \tilde{\lambda}_i)$$
Plots of G'_r, G''_r versus $a_T\omega$ will therefore be independent of temperature.
(will still depend on the
material through the $\tilde{\lambda}_i$)

