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Newtonian fluids: 
(all flows)

In general: ( )γτ �f−=

stress tensor

In the general case, f 
needs to be a non-linear 
function (in time and 
position)

Rate-of-
deformation tensorγµτ �−=

Constitutive Equation – an accounting for all stresses, all flows

What should we choose 
for the function f?

ηlog

γ�log

oη
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Non-Newtonian, Inelastic Fluids

First, we concentrate on 
the observation that shear
viscosity depends on 
shear rate.
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Non-Newtonian 

viscosity, ηηηη

shear rate
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We will design a constitutive equation 
that predicts this behavior in shear flow
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Newtonian 
Constitutive Equation γµτ �−=

For Newton’s experiment (shear flow):
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We could make this equation give 
the right answer (shear thinning) in 
steady shear flow if we substituted 

a function of shear rate for the 
constant viscosity.
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Generalized Newtonian Fluid (GNF)
constitutive equation

( )
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Rate of Deformation
Magnitude of the rate of deformation tensor
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Constitutive Equation – an accounting for all stresses, all flows

A simple choice for f: 

( )γγητ ��−=
Generalized 
Newtonian 

Fluids (GNF)

( )γτ �f−=
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( )γγητ ��−=
Generalized 
Newtonian 

Fluids (GNF)

What is our justification for 
this (or any other) choice?

WAIT!

Well, none really.  It just seems like it might work.  If it does, 
we’ve lucked out!

This is called an empirical model.

Thus, after proposing such a model, we will have to check to 
see if its predictions match reality.  If they do, we have made 
a good (lucky!) choice.

© Faith A. Morrison, Michigan Tech U.

( )γγητ ��−=
Generalized 
Newtonian 

Fluids (GNF)

•Stress tensor is directly proportional to rate-of-deformation 
tensor

•There is no explicit time-dependence

•The function η is only a function of the magnitude of the 
rate-of-deformation tensor

Model characteristics:
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What do we pick for           ?( )γη �

•Something that matches the data;

•Something simple, so that the 
calculations are easy

( )γγητ ��−=
Generalized 
Newtonian 

Fluids (GNF)

© Faith A. Morrison, Michigan Tech U.

In processing, the high-shear-rate 
behavior is the most important.

Figure 6.3, p. 172 Piau et al., 
linear and branched PDMS

+ linear 131 kg/mole
branched 156 kg/mole
linear 418 kg/mol
branched 428 kg/mol
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Power-law 
model for 
viscosity
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=
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dx
dv

mη

On a log-log plot, this 
would give a straight line:

( )
2

1log1loglog
dx
dv

nm −+=η

Y = B + M X
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x
v

∂
∂≡γ�1−= nmγη � in shear flow

(in shear 
flow)

Power-law 
model for 
viscosity
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γ
τη
�

21−≡

ηlog

Newtonian

shear thinning

Non-Newtonian shear 
viscosity

1,1 == − nm nγη �

1,1 <= − nm nγη �

γ�log

steady 
shear 
flow

slope = n-1
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Power-Law Generalized Newtonian Fluid 
(Ostwald-deWaele Model)

γγητ ��)(−=

m or K = consistency index (m = µ for Newtonian)
n = power-law index (n = 1 for Newtonian)

1−−= nmγη �

© Faith A. Morrison, Michigan Tech U.

γγ �� ≡
(Usually 0.5< n <1)

Carreau-
Yassuda 
GNF

© Faith A. Morrison, Michigan Tech U.

( ) ( )[ ] a
n

a
1

0 1
−

∞∞ +−+= λγηηηη �

( )γγητ ��−=

•The viscosity function approaches the constant value of       as
deformation rate get large

•The viscosity function approaches the constant value η0 as 
deformation rate gets small

• λ is the time constant for the fluid

• n determines the slope of the power-law region

∞η

A model with 5 
parameters
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Carreau-
Yassuda 
GNF
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slope is determined by n 

ηlog

γ�log

∞η

position of break on γ�  
scale is determined by λ 

oη

curvature here  
is determined by a 
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What about shear thickening?

Figure 6.27, p. 188 Metzner and 
Whitlock; TiO2/water suspensions
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Power-Law GNF
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ηlog

Newtonian

shear thickening

shear thinning

1,1 == − nm nγη �

1,1 <= − nm nγη �

γ�log

steady shear flow

1,1 >= − nm nγη �
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Other Inelastic Fluids

What about mayonnaise?

Mayonnaise and many 
other like fluids 
(paint, ketchup, most 
suspensions, asphalt) 
is able to sustain a 
yield stress.

Once the fluid begins to deform under an imposed stress, the 
viscosity may either be constant or may shear-thin.  This type of 
steady shear viscosity behavior can be modeled with a GNF.
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γγ �� =

constant slope = µo (mayo, 
paints, suspensions)

21τ−

oτ

Bingham plastic

Newtonian

© Faith A. Morrison, Michigan Tech U.

Non-Newtonian Fluids

Yield 
stress

For some fluids, no flow occurs 
when moderate stresses are applied.

© Faith A. Morrison, Michigan Tech U.

Bingham plasticNon-Newtonian Fluids

oτ

Yield 
stress

Friend and Hunter, 1971; dispersions of 
PMMA in water at various ζ-potentials; 
From Larson, p353.

PMMA in water



11

ηlog

γ�log

oµ

slope = -1

21τ

γ�

yτ

slope = µo

Bingham Plastic
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steady shear flow
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Non-Newtonian viscosity, ηηηη
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µo = viscosity parameter
τy = yield stress

There is no flow until the shear stress exceeds 
a critical value τ0 called the yield stress.
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Bingham 
GNF ( )γγητ ��−=

A model with 2 
parameters
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Other GNF 
viscosity 
models

© Faith A. Morrison, Michigan Tech U.

See Carreau, DeKee, and Chhabra for 
complete discussion (Rheology of 
Polymeric Systems, Hanser, 1997)

Ellis Model

4-Parameter Carreau Model (same as CY with a=2)

Cross-Williamson Model (same as CY with a=1,            )

DeKee Model

Casson Model

Herschel-Bulkley Model

DeKee-Turcotte Model

1
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ττ =
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( )γγητ ��−=

Other GNF 
viscosity 
models

© Faith A. Morrison, Michigan Tech U.

See Carreau, DeKee, and Chhabra for 
complete discussion (Rheology of 
Polymeric Systems, Hanser, 1997)

Ellis Model

4-Parameter Carreau Model (same as CY with a=2)

Cross-Williamson Model (same as CY with a=1,            )

DeKee Model

Casson Model

Herschel-Bulkley Model

DeKee-Turcotte Model
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Yield stress 
plus power-
law viscosity 

behavior


