
1

•A first constitutive equation

•Can match steady shearing data very well

•Simple to calculate with

•Found to predict pressure-drop/flow rate 
relationships well

•Fails to predict shear normal stresses

•Fails to predict start-up or cessation effects 
(time-dependence, memory) – only a function of 
instantaneous velocity gradient

•Derived ad hoc from shear observations; 
unclear of validity in non-shear flows
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Summary: Generalized Newtonian Fluid 
Constitutive Equations

PRO:

CON:

We now look to 
address this 

failing of GNF 
models by 
seeking to 

incorporate 
memory.
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Rules for Constitutive Equations

•Must be of tensor order

•Must be a tensor (independent of coordinate system)

•Must be a symmetric tensor

•Must make predictions that are independent of the 
observer

•Should correctly predict observed flow/deformation 
behavior

The stress expression:

)infomaterial,,,,()( γγγγτ &&&& IIIIIIft =
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Rules for Constitutive Equations

•Must be of tensor order

•Must be a tensor (independent of coordinate system)

•Must be a symmetric tensor

•Must make predictions that are independent of the 
observer

•Should correctly predict observed flow/deformation 
behavior

The stress expression:

)infomaterial,,,,()( γγγγτ &&&& IIIIIIft = Tensor invariants –
scalars associated with a 

tensor that do not 
depend on coordinate 

system
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Tensor Invariants

AtrAtraceIA =≡

For the tensor written in Cartesian coordinates:
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Note:  the definitions of invariants written in terms of 
coefficients are only valid when the tensor is written in 
Cartesian coordinates.
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Fluids with Memory - Chapter 8
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)ninformatiomaterial,,,,()( γγγγτ &&&& IIIIIIft =

We seek a constitutive equation that includes memory effects.

calculates the 
stress at a 
particular time, t

2 equations so far:
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So far, stress at t depends on 
rate-of-deformation at t only
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γγγγητ

γµτ
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ttNewtonian

Generalized Newtonian

Neither can predict:

•Shear normal stresses - this will be wrong so long as we use 
constitutive equations proportional to

•stress transients in shear (startup, cessation) - this flaw seems 
to be related to omitting fluid memory

Current Constitutive Equations

γ&

We will try to fix this now; we will address the first point 
when we discuss advanced constitutive equations
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Startup of Steady Shearing
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Figures 6.49, 6.50, p. 208 
Menezes and Graessley, PB soln
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Cessation of Steady Shearing
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Figures 6.51, 6.52, p. 209 Menezes and 
Graessley, PB soln
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How can we incorporate time-dependent effects?

First we explore a simple memory fluid.
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)()~8.0()(~)( 0tttt −−−= γηγητ &&

Let’s construct a new constitutive equation that remembers the 
stress at a time t0 seconds ago

Newtonian 
contribution

contribution 
from fluid 
memory

η~ is a constant parameter of the model

This is the 
rate-of-
deformation 
tensor t0

seconds before
time t
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What does this model predict?

Steady shear
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Steady Shear Flow Material Functions

constant)( 0 == γς && t

Kinematics:
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Start-up of Steady Shear Flow Material Functions
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Predictions of the simple memory fluid
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)()~8.0()(~)( 0tttt −−−= γηγητ &&

Steady shear

0

~8.1

21 =Ψ=Ψ
= ηη The steady viscosity reflects 

contributions from what is currently 
happening and contributions from 
what happened t0 seconds ago.
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0)()(

0

0

~8.1

~
0

)(

21

0

0

=Ψ=Ψ

≥
≤≤

<








=

++

+

tt

tt

tt

t

t

η
ηη



8

Predictions of the simple memory fluid
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Shear start-up
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Figures 6.49, 6.50, p. 208 Menezes 
and Graessley, PB soln

Predictions of the simple memory fluid
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Shear start-up

η~ η~8.1

)(t+η

t

0 t

)(21 tτ

What the data show:

What the GNF models predict:

0 t

)(21 tτ

increasing γ&

increasing γ&

What the simple memory fluid 
model predict:

t0
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Predictions of the simple memory fluid
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Shear start-up

η~ η~8.1

)(t+η

t

0 t

)(21 tτ

What the data show:

What the GNF models predict:

0 t

)(21 tτ

increasing γ&

increasing γ&

What the simple memory fluid 
model predict:

t0

Adding that 
contribution from the 

past introduces the 
observed “build-up” 

effect to the predicted  
start-up material 

functions.

)2()~6.0()()~8.0()(~)( 00 tttttt −−−−−= γηγηγητ &&&

We can make the stress rise smoother by adding more 
fading memory terms.
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Newtonian 
contribution

contribution 
from t0

seconds ago

contribution 
from 2t0

seconds ago

η~ η~8.1

)(t+η

tt0 2t0

η~4.2

The memory 
is fading
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)(t+η

t

The fit can be made to be perfectly smooth by using a sum of 
exponentially decaying terms as the weighting functions.
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This sum can be approximated by an integral.
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This sum can be approximated by this integral.
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This sum can be approximated by this integral.
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(Note: this is an 
underestimate of our 

previous decaying 
function, but the choice 
of function is arbitrary)
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Maxwell Model 
(integral 
version)

Relaxation time λ - quantifies how fast 
memory fades

Zero-shear viscosity η0 – gives the value 
of the steady shear viscosity

Two parameters:
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