

Mathematics Review	Po	lymer Rheology
Laws of A Product of	lgebra for Indeterminate Vectors:	
	NO commutative $\underline{a} \ \underline{v} \neq \underline{v} \ \underline{a}$ yes associative $\underline{b} (\underline{a} \ \underline{v}) = (\underline{b} \ \underline{a}) \ \underline{v} = \underline{b} \ \underline{a} \ \underline{v}$ yes distributive $\underline{a} (\underline{v} + \underline{w}) = \underline{a} \ \underline{v} + \underline{a} \ \underline{w}$	
	© Faith A. Mo	orrison, Michigan Tech U.

Mathematics ReviewPolymer RheologyHow can we represent tensors with respect to a chosen
coordinate system?Just follow the rules of tensor algebra
$$\underline{a} \underline{m} = (a_1 \hat{e}_1 + a_2 \hat{e}_2 + a_3 \hat{e}_3)(m_1 \hat{e}_1 + m_2 \hat{e}_2 + m_3 \hat{e}_3)$$

 $= a_1 \hat{e}_1 m_1 \hat{e}_1 + a_1 \hat{e}_1 m_2 \hat{e}_2 + a_1 \hat{e}_1 m_3 \hat{e}_3 +$
 $a_2 \hat{e}_2 m_1 \hat{e}_1 + a_2 \hat{e}_2 m_2 \hat{e}_2 + a_2 \hat{e}_2 m_3 \hat{e}_3 +$
 $a_3 \hat{e}_3 m_1 \hat{e}_1 + a_3 \hat{e}_3 m_2 \hat{e}_2 + a_3 \hat{e}_3 m_3 \hat{e}_3$ $= \sum_{k=1}^3 \sum_{w=1}^3 a_k \hat{e}_k m_w \hat{e}_w$
 $= \sum_{k=1}^3 \sum_{w=1}^3 a_k m_w \hat{e}_k \hat{e}_w$ Any tensor may be written as the
sum of 9 dyadic products of
basis vectors

latifeilia	tics Review Polymer Rheology
	Summary of Einstein Notation
	1. Express vectors, tensors, (later, vector operators) in a Cartesian coordinate system as the sums of coefficients multiplying basis vectors - each separate summation has a different index
	2. Drop the summation signs
	3. Dot products between basis vectors result in the Kronecker delta function because the Cartesian system is orthonormal.
	Note:
	•In Einstein notation, the presence of repeated indices implies a missing summation sign