3. Tensor - the indeterminate vector product of two (or more) vectors
 e.g.: stress $\underline{\underline{\tau}}$ velocity gradient $\underline{\underline{\gamma}}$
 - tensors may be constant or may be variable

Definitions

dyad or dyadic product - a tensor written explicitly as the indeterminate vector product of two vectors

$\underline{\underline{a}} \underline{d}$	dyad
$\underline{\underline{A}}$	general representation of a tensor

Mathematics Review
 Laws of Algebra for Indeterminate
 Product of Vectors:

Polymer Rheology

$$
\begin{array}{lc}
\text { NO commutative } & \underline{a} \underline{v} \neq \underline{v} \underline{a} \\
\text { yes associative } & \underline{b}(\underline{a} \underline{v})=(\underline{b} \underline{a}) \underline{v}=\underline{b} \underline{a} \underline{v} \\
\text { yes distributive } & \underline{a}(\underline{v}+\underline{w})=\underline{a} \underline{v}+\underline{a} \underline{w}
\end{array}
$$

How can we represent tensors with respect to a chosen coordinate system?

$$
\begin{aligned}
\underline{a} \underline{m}= & \left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right)\left(m_{1} \hat{e}_{1}+m_{2} \hat{e}_{2}+m_{3} \hat{e}_{3}\right) \\
= & a_{1} \hat{e}_{1} m_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} m_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} m_{3} \hat{e}_{3}+ \\
& a_{2} \hat{e}_{2} m_{1} \hat{e}_{1}+a_{2} \hat{e}_{2} m_{2} \hat{e}_{2}+a_{2} \hat{e}_{2} m_{3} \hat{e}_{3}+ \\
& a_{3} \hat{e}_{3} m_{1} \hat{e}_{1}+a_{3} \hat{e}_{3} m_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} m_{3} \hat{e}_{3} \\
= & \sum_{k=1}^{3} \sum_{w=1}^{3} a_{k} \hat{e}_{k} m_{w} \hat{e}_{w} \\
= & \sum_{k=1}^{3} \sum_{w=1}^{3} a_{k} m_{w} \hat{e}_{k} \hat{e}_{w} \quad \begin{array}{c}
\text { Any tensor may be written as the } \\
\text { sum of } 9 \text { dyadic products of } \\
\text { basis vectors }
\end{array}
\end{aligned}
$$

What about $\underline{\underline{A} \text { ? Same. }}$

$$
\underline{\underline{A}}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j} \hat{e}_{i} \hat{e}_{j}
$$

Einstein notation for tensors: drop the summation sign; every double index implies a summation sign has been dropped.

© Faith A. Morrison, Michigan Tech U.

How can we use Einstein Notation to calculate dot products between vectors and tensors?

It's the same as between vectors.

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}= \\
& \underline{a} \cdot \underline{u} \underline{v}= \\
& \underline{b} \cdot \underline{\underline{A}}=
\end{aligned}
$$

Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian coordinate system as the sums of coefficients multiplying basis vectors - each separate summation has a different index
2. Drop the summation signs
3. Dot products between basis vectors result in the Kronecker delta function because the Cartesian system is orthonormal.

Note:
-In Einstein notation, the presence of repeated indices implies a missing summation sign
-The choice of initial index (i, m, p, etc.) is arbitrary - it merely indicates which indices change together

