$$
\begin{array}{|l|l}
\hline \underline{\gamma}\left(t, t^{\prime}\right)=\nabla \underline{u}\left(t, t^{\prime}\right)+\left[\nabla \underline{u}\left(t, t^{\prime}\right)\right]^{T} & \begin{array}{r}
\text { Accounts for changes in } \\
= \\
\underline{u}\left(t, t^{\prime}\right)=\underline{r}\left(t^{\prime}\right)-\underline{r}(t)
\end{array} \\
\text { shape and orientation. }
\end{array}
$$

$$
\underline{u}\left(r, r^{\prime}\right)=\underline{r}^{\prime}-\underline{r}
$$

Origin $O$
fixed in space


Orientation changes ( $r$ changes direction) Shape does not change (length of $\underline{r}$ does not change)


Orientation changes
Shape changes

We desire a strain tensor that accurately captures large-strain deformation without being affected by rigid-body rotation.

$$
\text { Consider: } \quad \text { time }=t^{\prime}
$$

Shape and position of a
fixed coordinate
 system (xyz)


EXAMPLE: What is the inverse-deformation gradient tensor in steady shear flow?

$$
\underline{v}=\left(\begin{array}{c}
\dot{\gamma}_{0} y \\
0 \\
0
\end{array}\right)_{x y z}
$$

$$
\underline{r}=\left(\begin{array}{c}
x^{\prime}+\left(t-t^{\prime}\right) \dot{\gamma}_{0} y^{\prime} \\
y \\
z
\end{array}\right)_{x y z}
$$

EXAMPLE: What is $\frac{\partial \underline{\underline{F}}^{-1}}{\partial t}$ ?

We can answer by writing the definition of the deformation gradient tensor in Einstein notation and expanding. We will also need the chain rule of differentiation.

