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We desire a strain tensor that accurately captures large-strain 
deformation without being affected by rigid-body rotation.
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All these strain measures include 
both deformation and orientation
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We can separate the deformation and 
orientation information in      and        using a 
technique called polar decomposition.
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Polar Decomposition Theorem

Any tensor for which an inverse exists has two 
unique decompositions:
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Orthogonal tensor
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Symmetric, nonsingular 
tensors

Pure rotation tensor
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EXAMPLE: Calculate the right stretch tensor and rotation 
tensor for a given tensor.  Calculate the angle through which  
rotates the vector u.
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We have partially isolated the effect of rotation 
through polar decomposition.  

We can further isolate stretch from rotation by 
considering the eigenvectors of      and      .  U V
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original (strain) tensor

rotation tensor

right stretch tensor

left stretch tensor
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Physical Interpretation
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proposed 
deformation tensors; 

contain stretch and 
rotation

proposed deformation 
tensors; contain stretch 

of eigenvectors, BUT 
NO ROTATION

Finite Strain Tensors
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EXAMPLE: Calculate stress predicted in rigid-body rotation by 
a finite-strain Hooke’s law.

EXAMPLE: Calculate stress predicted in shear by a finite-strain 
Hooke’s law.  Compare with experimental results.
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Compare Finite-Strain Hooke’s Law with Observations

NOTE: for the 
first time we 
have predicted 
nonzero normal 
stresses in shear.
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Now, let’s fix the Maxwell model.

� �
tdte

t tt

���� �
f�

c�
�

)(0 �
�
�

� O �Integral Maxwell model 
(rate version):

tdttttM
t

������ �
��

),()( ��

t

ttG
ttM

��
���

��
)(

)(

Integral Maxwell model 
(strain version):

tdtte
t tt

��
�
�

�

�

�
�

�

�
�� �

��

��
),(

)’(

2
0 �
�
�

� �

GLVE model 
(strain version):
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Lodge model

Integral Maxwell model 
(strain version):

tdtte
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),’(1 ttC��substitute (-Finger tensor) for 
infinitesimal strain tensor

Lodge Model: tdttCe
t tt
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A finite-strain, viscoelastic constitutive equation

what does 
it predict?
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EXAMPLE: Calculate the material functions of steady shear 
flow for the Lodge model.

Lodge Model: tdttCe
t tt
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Lodge model


