Methods of Improving Constitutive Equations

$$
\left\{\begin{array}{l}
\underline{\underline{\tau}}+\lambda \frac{\partial \underline{\underline{\tau}}}{\partial t}=-\eta_{0} \dot{\underline{\gamma}} \\
\underline{\underline{\tau}}(t)=-\int_{-\infty}^{t}\left[\frac{\eta_{0}}{\lambda^{2}} e^{-\frac{(t-t)}{\lambda}}\right] \underset{=}{\gamma}\left(t, t^{\prime}\right) d t
\end{array}\right.
$$

We can also change the basic equation:
-linear modifications
-non-linear modifications

Other Constitutive Approaches

Simple Maxwell Model,

$$
\tau_{21}+\lambda \frac{\partial \tau_{21}}{\partial t}=-\eta_{0} \dot{\gamma}_{21}
$$

Upper-Convected
Maxwell Model, general

$$
\underline{\underline{\tau}}+\lambda \underline{\underline{\tau}}=-\eta_{0} \dot{\underline{\gamma}}
$$

Simple Jeffreys Model,
shear

$$
\tau_{21}+\lambda_{1} \frac{\partial \tau_{21}}{\partial t}=-\eta_{0}\left(\dot{\gamma}_{21}+\lambda_{2} \frac{\partial \dot{\gamma}_{21}}{\partial t}\right)
$$

Upper-Convected Jeffreys Model, general

$$
\underline{\underline{\tau}}+\lambda_{1} \stackrel{\nabla}{\underline{\tau}}=-\eta_{0}\left(\underline{\underline{\dot{\gamma}}}+\lambda_{2} \underset{\underline{\gamma}}{\underline{\gamma}}\right)
$$

(Oldroyd B Fluid)

Maxwell Model - Mechanical Analog

$$
\tau_{21}+\lambda \frac{\partial \tau_{21}}{\partial t}=-\eta_{0} \dot{\gamma}_{21}
$$

Jeffreys Model - Mechanical Analog

$$
\tau_{21}+\lambda_{1} \frac{\partial \tau_{21}}{\partial t}=-\eta_{0}\left(\dot{\gamma}_{21}+\lambda_{2} \frac{\partial \dot{\gamma}_{21}}{\partial t}\right)
$$

Unfortunately, this change only modifies $\mathrm{G}\left(\mathrm{t}-\mathrm{t}^{\prime}\right)$;

the Jeffreys Model is a GLVE model

$\underset{\text { (not frame-invariant) }}{\operatorname{Simple}} \underset{=}{\tau}+\lambda_{1} \frac{\partial \underline{\underline{\underline{\tau}}}}{\partial t}=-\eta_{0}\left(\underline{\dot{\gamma}}+\lambda_{2} \frac{\partial \dot{\underline{\gamma}}}{\partial t}\right)$
Now, solving for τ_{21} explicitly we obtain,

$$
\stackrel{\tau}{=}(t)=-\int_{-\infty}^{\int_{-\infty}} \underbrace{\left[\frac{\eta_{0}}{\lambda_{1}}\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right) e^{-\frac{t-t^{\prime}}{\lambda_{1}}}+\frac{2 \eta_{0} \lambda_{2}}{\lambda_{1}} \delta\left(t-t^{\prime}\right)\right]}_{G\left(t-t^{\prime}\right)} \dot{\gamma}\left(t^{\prime}\right) d t^{\prime}
$$

Other linear modifications of the Maxwell model motivated by springs and dashpots in series and parallel modify $\mathrm{G}(\mathrm{t}-\mathrm{t}$ ') but do not otherwise introduc Generalized Maxwell model)

$$
\text { White-Metzner Model } \quad \underset{=}{\tau}+\frac{\eta(\dot{\gamma})}{G_{0}} \stackrel{\nabla}{=}=-\eta(\dot{\gamma}) \underline{\dot{\gamma}}=
$$

Oldroyd 8-Constant Model

$$
\begin{aligned}
& \underline{\underline{\tau}}+\lambda_{1} \underset{\underline{\nabla}}{\nabla}+\frac{1}{2}\left(\lambda_{1}-\mu_{1}\right)\left(\underline{\underline{\dot{\gamma}}} \cdot \underline{\underline{\tau}}+\underset{\underline{\underline{\tau}} \cdot \underline{\underline{\gamma}})}{\underline{=}}+\frac{1}{2} \mu_{0}\left(\operatorname{tr} \underset{\underline{\underline{\tau}})}{\underline{\gamma}}+\frac{1}{2} v_{1}(\underline{\underline{\tau}}: \underline{\underline{\dot{\gamma}}}) \underline{\underline{I}}\right.\right. \\
& =-\eta_{0}\left(\underline{\underline{\gamma}}+\lambda_{2} \underline{\underline{\gamma}}+\left(\lambda_{2}-\mu_{2}\right)(\underline{\underline{\gamma}}: \underline{\underline{\gamma}})+\frac{1}{2} v_{2}(\underline{\underline{\dot{\gamma}}}: \underline{\underline{\gamma}}) \underline{\underline{I}}\right)
\end{aligned}
$$

The Oldroyd 8-constant contains many
other constitutive equations as special
cases. $\left\{\begin{array}{l}\mathrm{UCM} \\ \mathrm{UCM}+\text { terms }=\mathrm{UCJ}\end{array}\right.$

The Oldroyd 8-Constant model contains all terms linear in stress tensor and at most quadratic in rate-of-deformation tensor that are also consistent with frame invariance.

$$
\begin{aligned}
& \underline{\underline{\tau}}+\lambda_{1} \underset{\underline{\tau}}{\underline{\tau}}+\frac{1}{2}\left(\lambda_{1}-\mu_{1}\right)(\underline{\underline{\dot{\gamma}}} \cdot \underline{\underline{\tau}}+\underset{\underline{\tau}}{\underline{\underline{\gamma}}})+\frac{1}{2} \mu_{0}(\operatorname{tr} \underline{\underline{\tau}}) \underline{\underline{\gamma}}+\frac{1}{2} v_{1}(\underline{\underline{\tau}}: \underline{\underline{\dot{\gamma}}}) \\
& =-\eta_{0}\left(\underline{\underline{\underline{\gamma}}}+\lambda_{2} \underline{\underline{\gamma}}+\left(\lambda_{2}-\mu_{2}\right)(\underline{\underline{\gamma}}: \underline{\underline{\gamma}})+\frac{1}{2} v_{2}(\underline{\underline{\gamma}}: \underline{\underline{\gamma}}) \underline{\underline{I}}\right)
\end{aligned}
$$

$$
\text { Giesekus Model } \quad \stackrel{\tau}{=}+\lambda \underset{=}{\bar{\tau}}+\frac{\alpha \lambda}{\eta_{0}} \underbrace{\frac{\tau}{\underline{\tau}}=}=-\eta_{0} \dot{\gamma}=
$$ quadratic in stress

The only way to choose among these nonlinear models is to compare predictions.

We can also modify integral models to add non-linearity and thus produce new constitutive equations.

Factorized Rivlin-Sawyers Model

$$
\underset{\underline{\tau}}{\tau}(t)=+\int_{-\infty}^{t} M\left(t-t^{\prime}\right)\left(\Phi_{2}\left(I_{1}, I_{2}\right) \underline{\underline{C}}-\Phi_{1}\left(I_{1}, I_{2}\right) \underline{\underline{C^{-1}}}\right) d t^{\prime}
$$

Factorized K-BKZ Model
I_{1}, I_{2} are the

$$
\underset{=}{\tau}(t)=+\int_{-\infty}^{t} M\left(t-t^{\prime}\right)\left(2 \frac{\partial U}{\partial I_{2}} \underline{\underline{C}}-2 \frac{\partial U}{\partial I_{1}} \underline{\underline{C^{-1}}}\right) d t^{\prime}
$$

invariants of the
Finger or Cauchy
strain tensors (these are related).

Again, the only way to choose among these nonlinear models is to compare predictions
(see R. G. Larson, Constitutive Equations for Polymer Melts).

Choosing Constitutive Equations

We have fixed all the obvious flaws in our constitutive equations, and now we have too many choices!

We could make predictions and compare with experimental data, but some of the models (Rivlin Sawyer, K-BKZ) have undefined functions that must be specified.

How to proceed? We need some guidance.

All along we have taken a continuит-mechanics approach. We have run that course all the way through. Now we must go back and seek some insight from molecular ideas of relaxation and polymer dynamics.

Molecular Approach to Polymer Constitutive Modeling

We now attempt to calculate molecular forces by considering molecular models.

Polymer Dynamics
end-to-end vector, R
polymers may be modeled as random
 walks.

Polymer coil responds to deformation

A polymer chain adopts the most random configuration at equilibrium.

When deformed, the chain tries to recover that most random configuration, giving rise to a spring-like restoring force.

We will model the chain dynamics with a random walk.

Gaussian Springs

Equilibrium configuration distribution function - probability a walk has end-to-end distance \underline{R}

$$
\psi_{0}(\underline{R})=\left(\frac{\beta}{\sqrt{\pi}}\right)^{3} e^{-\beta^{2} \underline{R^{\prime}} \cdot \underline{R^{\prime}}}
$$

From an entropy calculation on a random walk we can calculate the force needed to deform a Gaussian spring

If we can relate this force to the arbitrary force on a surface, we can connect these two

Molecular force generated by deforming chain

$$
\begin{gathered}
\underline{\tilde{f}}=\binom{\text { Tension }}{\text { force on } d A}=\iiint \int\left(\begin{array}{c}
\text { Force on surface } \\
d A \text { due to chains } \\
\text { of ETE } \underline{R}
\end{array}\right) d R_{1} d R_{2} d R_{3} \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\text { Probability } \\
\text { chain of ETE } \underline{R} \\
\text { crosses surface } \\
\text { dA }
\end{array}\right) \\
\left(\begin{array}{c}
\text { Probability } \\
\text { chain has ETE } \\
\underline{R}) v^{\frac{1}{3}}
\end{array}\right) \\
\left(\begin{array}{c}
\text { Foe text }) \\
\text { by chain w/ } \\
\text { ETE } \underline{R}
\end{array}\right) \\
d A=v^{-\frac{2}{3}}
\end{array} \quad \psi(\underline{R}) d R_{1} d R_{2} d R_{3}\right.
\end{gathered}
$$

Molecular force generated by deforming chain

$$
\begin{gathered}
\underline{\tilde{f}}=\frac{3 k T v^{\frac{1}{3}}}{N a^{2}}(\hat{n} \cdot\langle\underline{R} \cdot \underline{R}\rangle) \\
\langle\underline{R} \cdot \underline{R}\rangle \equiv \iiint \underline{R} \cdot \underline{R} \psi(\underline{R}) d R_{1} d R_{2} d R_{3}
\end{gathered}
$$

BUT, from before . . .

$$
\underline{\tilde{f}=-d A \hat{n} \cdot \underline{\underline{\tau}}} \Leftarrow \begin{aligned}
& \text { molecular tension } \\
& \text { force on arbitrary } \\
& \text { surface in terms of } \underline{\underline{\tau}}
\end{aligned}
$$

Comparing these two we conclude,

$$
\underline{\tau}=-\frac{3 k T v}{N a^{2}}\langle\underline{R} \cdot \underline{R}\rangle \quad\left(d A=v^{-\frac{2}{3}}\right)
$$

Molecular force generated by

 deforming chainHow can we convert this equation,

$$
\tau=-\frac{3 k T v}{N a^{2}}\langle\underline{R} \cdot \underline{R}\rangle
$$

Molecular force generated by deforming chain
which relates molecular ETE vector and stress, into a constitutive equation, which relates stress and deformation?

We need a idea that connects ETE vector motion to macroscopic deformation of a polymer network or melt.

Elastic (Crosslinked) Solid

Between every two crosslinks there is a polymer strand that follows a random walk of N steps of length a.

How can we relate changes in end-to-end vector to macroscopic deformation?

ANSWER: affine-motion assumption: the macroscopic dimension changes are proportional to the microscopic dimension changes

after

Consider a general elongational deformation:

$$
\underline{\underline{F}}^{-1}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)_{123}
$$

For affine motion we can relate the components of the initial and final ETE vectors as,

We are attempting to calculate the stress tensor with this equation:

$$
\underline{\underline{\tau}}=-\frac{3 k T v}{N a^{2}}\langle\underline{R} \cdot \underline{R}\rangle
$$

$$
\langle\underline{R} \cdot \underline{R}\rangle \equiv \iiint \underline{R} \cdot \underline{R} \psi(\underline{R}) d R_{1} d R_{2} d R_{3}
$$

$\underline{R}(t)=\left(\begin{array}{l}\lambda_{1} R_{1}^{\prime} \\ \lambda_{2} R_{2}^{\prime} \\ \lambda_{3} R_{3}^{\prime}\end{array}\right)_{123}$

Probability chain has ETE between \underline{R} and $\underline{R}+d \underline{R}$:

$$
\begin{aligned}
& d \underline{R}: \int_{\text {Configuration }} \psi(\underline{R}) d R_{1} d R_{2} d R_{3} \\
& \text { distribution function }
\end{aligned}
$$

Equilibrium configuration distribution function:

$$
\psi_{0}(\underline{R})=\left(\frac{\beta}{\sqrt{\pi}}\right)^{3} e^{-\beta^{2} \underline{R}^{\prime} \cdot \underline{R}^{\prime}}
$$

But, if the deformation is affine, then the number of
ETE vectors between \underline{R} and $\underline{R}+d \underline{R}$ at time t is equal to the number of vectors with ETE between \underline{R}^{\prime} and

$$
\underline{R}^{\prime}+d \underline{R}^{\prime} \text { at } t^{\prime}
$$

$$
\text { Conclusion: } \psi(\underline{R})=\psi_{0}(\underline{R})=\left(\frac{\beta}{\sqrt{\pi}}\right)^{3} e^{-\beta^{2} \underline{R}^{\prime} \underline{R}^{\prime}}
$$

Now we are ready to calculate the stress tensor.

$$
\left.\begin{array}{c}
\underline{\underline{\tau}}=-\frac{3 k T v}{N a^{2}}\langle\underline{R} \cdot \underline{R}\rangle \\
\langle\underline{R} \cdot \underline{R}\rangle \equiv \iiint_{\underline{R}} \cdot \underline{R} \psi(\underline{R}) d R_{1} d R_{2} d R_{3} \\
\underline{R}(t)=\left(\begin{array}{l}
\lambda_{1} R_{1}^{\prime} \\
\lambda_{2} R_{2}^{\prime} \\
\lambda_{3} R_{3}^{\prime}
\end{array}\right)_{123} \quad \frac{R_{i}}{\lambda_{i}} \\
\psi(\underline{R})=\psi_{0}\left(\underline{R^{\prime}}\right)=\left(\frac{\beta}{\sqrt{\pi}}\right)^{3} e^{-\beta^{2} \underline{\underline{R}}^{\prime} \cdot \underline{R}^{\prime}}
\end{array}\right) .
$$

$$
\text { Final solution: } \underline{=}=-v k T \lambda_{i}^{2} \hat{e}_{i} \hat{e}_{i}
$$

Final solution for stress: $\quad \underset{=}{\tau}=-v k T \lambda_{i}^{2} \hat{e}_{i} \hat{e}_{i}$

Compare this solution with the Finger Strain Tensor for this flow.

$$
\underline{\underline{C}}^{-1}\left(t^{\prime}, t\right)=\left(\underline{\underline{F}}^{-1}\right)^{T} \cdot \underline{\underline{F^{-1}}}=\left(\begin{array}{ccc}
\lambda_{1}^{2} & 0 & 0 \\
0 & \lambda_{2}^{2} & 0 \\
0 & 0 & \lambda_{3}^{2}
\end{array}\right)_{123}
$$

Since the Finger tensor for any deformation may be written in diagonal form (symmetric tensor) our derivation is valid for all deformations.

$$
\underline{\underline{\tau}}=-v k T \underline{\underline{C^{-1}}}
$$

Which is the same as the finite-strain Hooke's law discussed earlier, with $G=v k T$.

