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Methods of Improving Constitutive Equations
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We can improve 
with new time 

derivatives or new 
strain measures.

We can also change 
the basic equation:

•linear modifications
•non-linear modifications
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Other Constitutive Approaches
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Simple Jeffreys Model, 
shear

Upper-Convected 
Jeffreys Model, general

(Oldroyd B Fluid)

retardation time
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Jeffreys Model - Mechanical Analog
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Maxwell Model - Mechanical Analog
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Unfortunately, this change only modifies G(t-t’);
the Jeffreys Model is a GLVE model

Simple Jeffreys Model 
(not frame-invariant)

Now, solving for �21 explicitly we obtain,
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Other linear modifications of the Maxwell model 
motivated by springs and dashpots in series and 

parallel modify G(t-t’) but do not otherwise introduce 
new behavior.
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(Might as well use the 
Generalized Maxwell model)
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Non-linear modifications of the Maxwell Model

White-Metzner Model

Oldroyd 8-Constant Model
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The Oldroyd 8-constant contains many 
other constitutive equations as special 

cases.
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The Oldroyd 8-Constant model contains all terms linear in stress 
tensor and at most quadratic in rate-of-deformation tensor that are also 
consistent with frame invariance.
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quadratic 
in stress

The only way to choose among 
these nonlinear models is to 

compare predictions.
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We can also modify integral models to add non-linearity 
and thus produce new constitutive equations.
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Factorized Rivlin-Sawyers Model
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Factorized K-BKZ Model

I1, I2 are the 
invariants of the 
Finger or Cauchy 
strain tensors (these 
are related). Again, the only way to choose among these nonlinear 

models is to compare predictions 
(see R. G. Larson, Constitutive Equations for Polymer Melts).
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We have fixed all the obvious flaws in our constitutive 
equations, and now we have too many choices!

Choosing Constitutive Equations

We could make predictions and compare with 
experimental data, but some of the models (Rivlin 
Sawyer, K-BKZ) have undefined functions that must be 
specified.

How to proceed?

All along we have taken a continuum-mechanics 
approach.  We have run that course all the way through.  
Now we must go back and seek some insight from 
molecular ideas of relaxation and polymer dynamics.

We need some guidance.



5

© Faith A. Morrison, Michigan Tech U.

R

Molecular Approach to Polymer Constitutive Modeling

���� ndAf ˆ
~molecular tension 

force on arbitrary 
surface

We now attempt to calculate 
molecular forces by considering 

molecular models.

stress tensor

end-to-end 
vector, R

Polymer Dynamics

polymers may be 
modeled as random 

walks.
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Rend-to-end 
vector, R

A polymer chain adopts 
the most random 
configuration at 
equilibrium.

When deformed, the chain 
tries to recover that most 
random configuration, 
giving rise to a spring-like 
restoring force.

spring of equilibrium 
length and orientation R

Polymer coil responds to deformation

We will model the chain dynamics 
with a random walk.
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Equilibrium configuration 
distribution function - probability a 
walk has end-to-end distance R

From an entropy calculation on a random 
walk we can calculate the force needed to 
deform a Gaussian spring

Gaussian Springs

R
Na

kT
f

2

3
�

τ⋅−= ndAf ˆ
~molecular tension

force on arbitrary
surface

stress tensor

If we can relate this force to the arbitrary 
force on a surface, we can connect these two
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R
Na

kT
f
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3
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Probability 
chain has ETE 

R

Probability 
chain of ETE R
crosses surface 

dA

Force exerted 
by chain w/ 

ETE R 

321 dRdRdR����
Force on surface 
dA due to chains 

of ETE R

Tension 
force on dA

321)( dRdRdRR�(see text)

Molecular force generated by deforming chain
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Molecular force generated by deforming chain
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Comparing these two 
we conclude,
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BUT, from before . . .
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Molecular force generated by 
deforming chain
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How can we convert this equation,

RR
Na

kT
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2

3 �
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Molecular force generated by 
deforming chain

which relates molecular ETE vector and stress, into a 
constitutive equation, which relates stress and deformation?

We need a idea that connects ETE vector 
motion to macroscopic deformation of a 

polymer network or melt.
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1R

2R

Elastic (Crosslinked) Solid

RETE = end-to-end vector

Between every two crosslinks there is a 
polymer strand that follows a random 
walk of N steps of length a.

Distribution of 
ETE vectors
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How can we relate changes in end-to-end 
vector to macroscopic deformation?

affine-motion assumption:  the macroscopic 
dimension changes are proportional to the 
microscopic dimension changes

ANSWER:

before after
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Consider a general elongational deformation:

1233

2

1
1

00

00

00

�
�
�



�

�
�
�

�

�
��

�
�

�
F

For affine motion we can relate the components of the 
initial and final ETE vectors as,
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We are attempting to calculate the stress tensor with this 
equation:

But, where do 
we get this?
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Probability chain has ETE 
between R and R+dR:

RReR c�c��
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�
Equilibrium configuration 

distribution function:

Configuration 
distribution function

But, if the deformation is affine, then the number of 
ETE vectors between R and R+dR at time t is equal to 

the number of vectors with ETE between R’ and 
R’+dR’ at t’
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Now we are ready to calculate the stress tensor.
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Compare this solution with the Finger Strain Tensor for 
this flow.

iii eekT ˆˆ2��� ��Final solution for stress:
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Which is the same as the finite-strain 
Hooke’s law discussed earlier, with G=�kT.

Since the Finger tensor for 
any deformation may be 
written in diagonal form 
(symmetric tensor) our 

derivation is valid for all 
deformations.


