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Corrections to Capillary flow

•slip at the wall - Mooney analysis

•entrance and exit effects - Bagley correction

•Non-parabolic velocity profile - Weissenberg-Rabinowitsch
correction

© Faith A. Morrison, Michigan Tech U.
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Slip at the wall - Mooney analysis

Slip at the wall reduces the shear 
rate near the wall.
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Slip at the wall - Mooney analysis

Slip at the wall reduces the shear 
rate near the wall.
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The Mooney correction is a correction to the 
apparent shear rate
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Entrance and exit effects - Bagley correction
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This is the 
result when 
the end 
effects are 
negligible.

The Bagley correction is a 
correction to the wall shear stress
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The intercepts are equal 
to the entrance pressure 

losses; these must be 
subtracted from the data 

to get true pressure 
versus L/R.

Figure 10.8, p. 394 Bagley, PE
© Faith A. Morrison, Michigan Tech U.
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The slopes are equal to 
twice the shear stress for 

the various apparent 
shear rates
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Figure 10.8, p. 394 Bagley, PE

The data so far:

Now, correct shear rate for non-
parabolic velocity profile.

gammdotA deltPent slope sh stress sh stress
(1/s) psi psi psi Pa

250 163.53 32.705 16.3525 1.1275E+05
120 107.72 22.98 11.49 7.9220E+04
90 85.311 20.172 10.086 6.9540E+04
60 66.018 16.371 8.1855 5.6437E+04
40 36.81 13.502 6.751 4.6546E+04

© Faith A. Morrison, Michigan Tech U.
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constant that applies 
to all data points.
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Now, plot viscosity versus 
wall-shear-rate

Figure 10.8, p. 394 Bagley, PE

The data corrected for entrance/exit and non-
parabolic velocity profile:

gammdotA deltPent deltPent sh stress ln(sh st) ln(gda) WR gam-dotR viscosity
(1/s) psi Pa Pa correction 1/s Pa s

250 163.53 1.1275E+06 1.1275E+05 11.63289389 5.521460918 2.0677 316.73125 3.5597E+02
120 107.72 7.4270E+05 7.9220E+04 11.2799902 4.787491743 2.0677 152.031 5.2108E+02
90 85.311 5.8820E+05 6.9540E+04 11.14966143 4.49980967 2.0677 114.02325 6.0988E+02
60 66.018 4.5518E+05 5.6437E+04 10.9408774 4.094344562 2.0677 76.0155 7.4244E+02
40 36.81 2.5380E+05 4.6546E+04 10.74820375 3.688879454 2.0677 50.677 9.1849E+02
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Viscosity of polyethylene from Bagley’s data
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Viscosity from Capillary Experiments, Summary:

© Faith A. Morrison, Michigan Tech U.
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1. Take data of pressure-drop 
versus flow rate for capillaries of 
various lengths; perform Bagley 
correction (entrance pressure)

2. If possible, also take data for 
capillaries of different radii; 
perform Mooney correction 
(slip)

3. Perform the Weissenberg-
Rabinowitsch correction (wall 
shear rate)

4. Plot true viscosity versus true 
wall shear rate

)(QP∆raw data:

final data: RR γτη �/=



8

 x

 y

 x

 y
(z-plane
section)

(z-plane
section)

 θ

 φ

 r  θο
 H

 r

 θ

(θ-plane
section)

(φ−plane
section)

 θ

 r
 θ

(z-plane
section)

(θ-plane
section)

 θ

(z-plane
section)

(θ-plane
section)

Other Experimental Shear Geometries
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Why do we need more than one 
method of measuring viscosity?

Torsional flows
Capillary flow

•At low rates, torques/pressures 
become low 

•At high rates, torques/pressures 
become high; flow instabilities set in
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Limits on Measurements:  Flow instabilities in rheology

Figure 6.9, p. 176 
Pomar et al. LLDPE

capillary flow

© Faith A. Morrison, Michigan Tech U.
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Measureables:
Torque T to turn plate
Rate of angular rotation ΩΩΩΩ
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Ω

Torsional Cone-and-Plate Flow - Viscosity

Measureables:
Torque T to turn cone
Rate of angular rotation ΩΩΩΩ

Since shear rate is constant 
everywhere, so is stress, and we 
can calculate stress from torque.
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Ω

Torsional Cone-and-Plate Flow – 1st Normal Stress

Measureables:
Normal thrust F  θ
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(see text pp404-5; 
also DPL pp522-
523)
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•Cone and Plate:

•MEMS used to manufacture sensors at different radial positions

S. G. Baek and J. J. Magda, J. 
Rheology, 47(5), 1249-1260 (2003)

J. Magda et al. Proc. XIV International 
Congress on Rheology, Seoul, 2004.
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(see Bird et al., DPL)

Need normal force as 
a function of r / R

Torsional Cone-and-Plate Flow – 2nd Normal Stress

RheoSense Incorporated 
(www.rheosense.com)
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Comparison with other 
instruments

S. G. Baek and J. J. Magda, J. 
Rheology, 47(5), 1249-1260 (2003)

RheoSense Incorporated

Limits on Measurements:  Flow instabilities in rheology

Figures 6.7 and 6.8, p. 
175 Hutton; PDMS

cone and plate flow

© Faith A. Morrison, Michigan Tech U.
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A
cross-section A:

cup

bob

fluid

air pocket

alternate
cross-section A:

Couette Flow

•see text

•useful for low viscosity fluids

fluid

© Faith A. Morrison, Michigan Tech U.

Elongational Flow Measurements
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Experimental Elongational Geometries
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ideal elongational
deformation

initial

final

end effects

inhomogeneities

effect of gravity,
drafts, surface tension

experimental
challenges

initial

final

final

Experimental Difficulties in Elongational Flow

© Faith A. Morrison, Michigan Tech U.

Filament Stretching Rheometer (FiSER)

McKinley, et al., 15th Annual Meeting 
of the International Polymer 

Processing Society, June 1999.

Tirtaatmadja and Sridhar, J. Rheol., 37, 1081-
1102 (1993)

•Optically monitor 
the midpoint size

•Very susceptible to 
environment

•End Effects
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RHEOMETRICS RME

•Steady and startup flow
•Recovery
•Good for melts

Achieving commanded 
strain requires great 

care.

Use of the video camera 
(although tedious) is 

recommended in order 
to get correct strain rate.
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www.xpansioninstruments.com

Sentmanat Extension Rheometer 
•Originally developed for rubbers, good 
for melts

•Measures elongational viscosity, startup, 
other material functions

•Two counter-rotating drums

•Easy to load; reproducible

© Faith A. Morrison, Michigan Tech U.

Comparison with 
other instruments 

(literature)

Comparison on 
different host 
instruments

Sentmanat et al., J. Rheol., 49(3) 585 (2005)
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CaBER Extensional Rheometer 
•Polymer solutions
•Works on the principle of capillary filament break up
•Cambridge Polymer Group and HAAKE

For more on theory see:  campoly.com/notes/007.pdf

Brochure:  www.thermo.com/com/cda/product/detail/1,,17848,00.html

•Impose a rapid step elongation
•form a fluid filament, which continues to deform
•flow driven by surface tension
•also affected by viscosity, elasticity, and mass transfer
•measure midpoint diameter as a function of time
•Use force balance on filament to back out an apparent 
elongational viscosity

Operation

© Faith A. Morrison, Michigan Tech U.

© Faith A. Morrison, Michigan Tech U.
Anna and McKinley, J. Rheol. 45, 115 (2001). 

Filament stretching 
apparatus

Capillary breakup 
experiments

•Must know surface 
tension

•Transient agreement is 
poor

•Steady state agreement 
is acceptable

•Be aware of effect 
modeling assumptions 
on reported results

Comments
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Elongational Viscosity via Contraction Flow:  
Cogswell/Binding Analysis

Fluid elements along 
the centerline 

undergo considerable 
elongational flow

By making strong 
assumptions about the 
flow we can relate the 

pressure drop across the 
contraction to an 

elongational viscosity

Assumptions for the Cogswell
Analysis
• incompressible fluid 
• funnel-shaped flow; no-slip on funnel surface 
• unidirectional flow in the funnel region 
• well developed flow upstream and 
downstream
• θ-symmetry 
• pressure drops due to shear and elongation 
may be calculated separately and summed to 
give the total entrance pressure-loss
• neglect Weissenberg-Rabinowitsch correction
• shear stress is related to shear-rate through a 
power-law
• elongational viscosity is constant
• shape of the funnel is determined by the 
minimum generated pressure drop 
• no effect of elasticity (shear normal stresses 
neglected) 

• neglect inertia
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F. N. Cogswell, Polym. Eng. Sci. (1972) 12, 64-73. 
F. N. Cogswell, Trans. Soc. Rheol. (1972) 16, 383-403.
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Assumptions for the Binding Analysis
• incompressible fluid 
• funnel-shaped flow; no-slip on funnel surface 
• unidirectional flow in the funnel region 
•well developed flow upstream and downstream 
• θ -symmetry 
• shear viscosity is related to shear-rate through a 
power-law 
• elongational viscosity is given by a power law
• shape of the funnel is determined by the minimum 
work to drive flow 
• no effect of elasticity (shear normal stresses 
neglected) 
• the quantities               and               , related to the
shape of the funnel, are neglected; implies that the 
radial velocity is neglected when calculating the rate 
of deformation 
• neglect energy required to maintain the corner 
circulation 

• neglect inertia
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Binding Analysis

elongation 
viscosity
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Rheotens (Goettfert)

•Does not measure material 
functions without constitutive 
model
•small changes in material 
properties are reflected in 
curves
•easy to use
•excellent reproducibility
•models fiber spinning, film 
casting
•widespread application

www.goettfert.com/downloads/Rheotens_eng.pdf

"Rheotens test is a rather complicated function of the characteristics 
of the polymer, dimensions of the capillary, length of the spin line and 
of the extrusion history"

from their brochure:
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"The rheology of the rheotens test,“ M.H. 
Wagner, A. Bernnat, and V. Schulze, J. 

Rheol. 42, 917 (1998)

Raw data

vs. draw ratioGrand master curve

Draw resonance

exit dievvV =
factorshift =b

An elongational viscosity may be 
extracted from a “grand master 
curve” under some conditions

Summary

© Faith A. Morrison, Michigan Tech U.

•Shear measurements are readily made

•Choice of shear geometry is driven by fluid properties, shear 
rates

•Care must be taken with automated instruments (nonlinear 
response, instrument inertia, resonance, motor dynamics)

SHEAR

•Elongational properties are still not routine

•Newer instruments (RME, Sentmanat,CaBER) have improved 
the possibility of routine elongational flow measurements

•Some measurements are best left to the researchers dedicated to 
them due to complexity (FiSER)

•Industries that rely on elongational flow properties (fiber 
spinning, foods) have developed their own ranking tests

ELONGATION


