

Mathematics Review	Polymer Rheology
<i>3. Tensor</i> – (<i>continued</i>) More Definiti	ons
Symmetric Tensor $\underline{\underline{M}} = \underline{\underline{M}}^{T}$	e.g. $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{pmatrix}$
$M_{ik} = M_{ki}$	$\begin{pmatrix} 3 & 5 & 6 \end{pmatrix}_{23}$
$\underline{\underline{M}} = -\underline{\underline{M}}^{T}$ $\underline{\underline{M}}_{ik} = -\overline{\underline{M}}_{ki}$	$\begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix}_{23}$
	© Faith A. Morrison, Michigan Tech U.

Mathematics R	eview			Polymer Rheology
3. Tensor -	- (continued) Tensor order Scalars, v be tensors system).	More Definitions ectors, and tensors ma s (entities that exist in They are tensors of di egree of complexity	ay all be c dependent ifferent ord	onsidered to of coordinate ders, however.
	scalars vectors tensors higher- order tensors	O th -order tensors 1 st -order tensors 2 nd -order tensors 3 rd -order tensors	$ \begin{array}{c} 3^{0} \\ 3^{1} \\ 3^{2} \\ 3^{3} \end{array} $	Number of coefficients needed to express the tensor in 3D space
			© Faith A.	Morrison, Michigan Tech U.

Mathematics Review		Polymer Rheology			
3. Tensor – (continued)	More Defini	tions			
Tensor Invariants					
Scalars the numbers	Scalars that are associated with tensors; these are numbers that are independent of coordinate system.				
vectors:	v = v	The magnitude of a vector is a scalar associated with the vector			
		It is independent of coordinate system, i.e. it is an invariant.			
tensors:	<u>A</u>	There are three invariants associated with a second-order tensor.			
		© Faith A. Morrison, Michigan Tech U.			

