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3. Tensor – (continued)

Definitions
Scalar product of two tensors
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carry out the dot
products indicatedmkpikmip eeeeMA ˆˆ:ˆˆ=
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“p” becomes “k”
“i” becomes “m”
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But, what is a tensor really?

32)( 2 ++== xxxfyscalar function:

A tensor is a handy representation of a Linear Vector Function

a mapping of values of x onto values of y

)(vfw =vector function:

a mapping of vectors of v into vectors w

How do we express a
vector function?
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Multiplying vectors and tensors is
a convenient way of representing

the actions of a linear vector
function (as we will now show).
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What is a linear function?

Linear, in this usage, has  a precise, mathematical definition.

Linear functions (scalar and vector) have the
following two properties:
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It turns out . . .
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Tensors are Linear Vector Functions

Let f(a) = b be a  linear vector function.

We can write a in Cartesian coordinates.
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Using the linear properties of  f, we can distribute the function action:

befaefaefaaf =++= )ˆ()ˆ()ˆ()( 332211

These results are just vectors, we will
name them v, w, and m.
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bmeaweaveaaf =⋅+⋅+⋅= 321 ˆˆˆ)(
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Tensors are Linear Vector Functions (continued)

befaefaefaaf =++= )ˆ()ˆ()ˆ()( 332211

Now we note that the coefficients ai may be written as,

v w m

bmawavaaf =++= 321)(

332211 ˆˆˆ eaaeaaeaa ⋅=⋅=⋅=

Substituting,
The

indeterminate
vector product
has appeared!

( ) bmeweveaaf =++⋅= 321 ˆˆˆ)(

Mathematics Review

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

Using the distributive law, we can factor out the dot product with a:

This is just a tensor
(the sum of dyadic

products of vectors)
( ) Mmeweve ≡++ 321 ˆˆˆ

bMaaf =⋅=)(

Tensor operations
are convenient to use
to express linear
vector functions.

CONCLUSION:
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3. Tensor – (continued)

More Definitions
Identity Tensor
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3. Tensor – (continued) More Definitions

Zero Tensor
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Magnitude of a Tensor
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3. Tensor – (continued) More Definitions

Tensor Transpose

( ) ikik
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Exchange the
coefficients across the
diagonal

CAUTION:
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I recommend you
always interchange the
indices on the basis
vectors rather than on
the coefficients.
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3. Tensor – (continued) More Definitions

Symmetric Tensor                      e.g.
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Antisymmetric Tensor                  e.g.
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3. Tensor – (continued) More Definitions

Tensor order

Scalars, vectors, and tensors may all be considered to
be tensors (entities that exist independent of coordinate
system).  They are tensors of different orders, however.

order = degree of complexity

scalars

vectors

tensors

higher-
order
tensors

0th -order tensors

1st -order tensors

2nd -order tensors

3rd -order tensors

30

31

32

33

Number of
coefficients
needed to
express the
tensor in 3D
space
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3. Tensor – (continued) More Definitions

Tensor Invariants

vv =

Scalars that are associated with tensors; these are
numbers that are independent of coordinate system.

vectors: The magnitude of a vector is a
scalar associated with the
vector

It is independent of coordinate
system, i.e. it is an invariant.

tensors: There are three invariants
associated with a second-order
tensor.

A
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Tensor Invariants

AtrAtraceIA =≡

For the tensor written in Cartesian coordinates:

332211 AAAAAtrace pp ++==

( )

( ) hpjhpjA

kppkA

AAAAAAtraceIII

AAAAAAtraceII

=⋅⋅≡

==⋅≡ :

Note:  the definitions of invariants written in terms of
coefficients are only valid when the tensor is written in
Cartesian coordinates.


