3. Tensor - (continued)

Definitions

Scalar product of two tensors

$$
\begin{aligned}
\underline{\underline{A}}: \underline{\underline{M}} & =A_{i p} \hat{e}_{i} \hat{e}_{p}: M_{k m} \hat{e}_{k} \hat{e}_{m} \\
& =A_{i p} M_{k m} \overbrace{\hat{e}_{i} \hat{e}_{p}: \hat{e}_{k} \hat{e}_{m}} \begin{array}{l}
\begin{array}{l}
\text { carry out the dot } \\
\text { products indicated }
\end{array} \\
\\
\end{array} \underbrace{}_{i p} M_{k m} \quad\left(\hat{e}_{p} \cdot \hat{e}_{k}\right)\left(\hat{e}_{i} \cdot \hat{e}_{m}\right) \\
& =A_{i p} M_{k m} \quad \delta_{p k} \delta_{i m} \\
& =A_{m k} M_{k m}
\end{aligned}
$$

But, what is a tensor really?
A tensor is a handy representation of a Linear Vector Function

$$
\begin{aligned}
& \text { scalar function: } \quad y=f(x)=x^{2}+2 x+3 \\
& \text { a mapping of values of } x \text { onto values of } y
\end{aligned}
$$

| vector function: $\underline{w}=f(\underline{v})$ |
| :---: | :---: |
| a mapping of vectors of \underline{v} into vectors \underline{w} |

How do we express a
vector function?
© Faith A. Morrison, Michigan Tech U.

What is a linear function?

Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the following two properties:

$$
\begin{aligned}
& f(\lambda x)=\lambda f(x) \\
& f(x+w)=f(x)+f(w)
\end{aligned}
$$

Multiplying vectors and tensors is a convenient way of representing the actions of a linear vector function (as we will now show).

Tensors are Linear Vector Functions

Let $f(\underline{a})=\underline{b}$ be a linear vector function.
 We can write \underline{a} in Cartesian coordinates.

$$
\begin{aligned}
& \underline{a}=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
& f(\underline{a})=f\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right)=\underline{b}
\end{aligned}
$$

Using the linear properties of f, we can distribute the function action:

$$
f(\underline{a})=a_{1} \underbrace{f\left(\hat{e}_{1}\right)}+a_{2} \underbrace{f\left(\hat{e}_{2}\right)}+a_{3} \underbrace{f\left(\hat{e}_{3}\right)}=\underline{b}
$$

These results are just vectors, we will name them $\underline{v}, \underline{v}$, and \underline{m}.

Tensors are Linear Vector Functions (continued)

$$
\begin{aligned}
& f(\underline{a})=a_{1} \underbrace{f\left(\hat{e}_{1}\right)}_{\underline{v}}+a_{2} \underbrace{f\left(\hat{e}_{2}\right)}_{\underline{w}}+a_{3} \underbrace{f\left(\hat{e}_{3}\right)}_{\underline{m}}=\underline{b} \\
& f(\underline{a})=a_{1} \underline{v}+a_{2} \underline{w}+a_{3} \underline{m}=\underline{b}
\end{aligned}
$$

Now we note that the coefficients a_{i} may be written as,

$$
a_{1}=\underline{a} \cdot \hat{e}_{1} \quad a_{2}=\underline{a} \cdot \hat{e}_{2} \quad a_{3}=\underline{a} \cdot \hat{e}_{3}
$$

Substituting,
$f(\underline{a})=\underline{a} \cdot \hat{e}_{1} \underline{v}+\underline{a} \cdot \hat{e}_{2} \underline{w}+\underline{a} \cdot \hat{e}_{3} \underline{m}=\underline{b} \quad \begin{gathered}\text { The } \\ \text { indeterminate } \\ \text { vector product } \\ \text { has appeared! }\end{gathered}$

Using the distributive law, we can factor out the dot product with \underline{a} :

$$
f(\underline{a})=\underline{a} \cdot \underbrace{\left(\hat{e}_{1} \underline{v}+\hat{e}_{2} \underline{w}+\hat{e}_{3} \underline{m}\right)}=\underline{b}
$$

This is just a tensor
(the sum of dyadic $\left(\hat{e}_{1} \underline{v}+\hat{e}_{2} \underline{w}+\hat{e}_{3} \underline{m}\right) \equiv \underline{\underline{M}}$ products of vectors)

$$
f(\underline{a})=\underline{a} \cdot \underline{\underline{M}=\underline{b}}
$$

CONCLUSION:	Tensor operations are convenient to use to express linear vector functions.

© Faith A. Morrison, Michigan Tech U.

3. Tensor - (continued)

More Definitions

Identity Tensor

$$
\begin{aligned}
& \underline{\underline{I}=\hat{e}_{i} \hat{e}_{i}}=\begin{array}{rll}
& \hat{e}_{1} \hat{e}_{1}+\hat{e}_{2} \hat{e}_{2}+\hat{e}_{3} \hat{e}_{3} \\
=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)_{123} \\
\underline{\underline{A}} \cdot \underline{\underline{I}} & =A_{i p} \hat{e}_{i} \hat{e}_{p} \cdot \hat{e}_{k} \hat{e}_{k} \\
& =A_{i p} \hat{e}_{i} \delta_{p k} \hat{e}_{k} \\
& =A_{i k} \hat{e}_{i} \hat{e}_{k} \\
& =\underline{\underline{A}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Tensor }-(\text { continued }) \quad \text { More Definitions } \\
& \qquad \begin{array}{ll}
\text { Tensor Transpose } \\
\underline{\underline{M^{T}}}=\left(M_{i k} \hat{e}_{i} \hat{e}_{k}\right)^{T}=M_{i k} \hat{e}_{k} \hat{e}_{i} & \begin{array}{l}
\text { Exchange the } \\
\text { coefficients across the } \\
\text { diagonal }
\end{array}
\end{array}
\end{aligned}
$$

CAUTION:

$$
\begin{aligned}
(\underline{\underline{A} \cdot} \cdot \underline{\underline{C}})^{T} & =\left(A_{i k} \hat{e}_{i} \hat{e}_{k} \cdot C_{p j} \hat{e}_{p} \hat{e}_{j}\right)^{T}=\left(A_{i k} C_{p j} \hat{e}_{i} \hat{e}_{j} \delta_{k p}\right)^{T} \\
& =\left(A_{i p} C_{p j} \hat{e}_{i} \hat{e}_{j}\right)^{T} \\
& =A_{i p} C_{p j} \hat{e}_{j} \hat{e}_{i}
\end{aligned}
$$

It is not equal to: $(\underline{\underline{A}} \cdot \underline{C})^{T}=\left(A_{i p} C_{p j} \hat{e}_{i} \hat{e}_{j}\right)^{T \quad} \quad \begin{aligned} & \text { I recommend you } \\ & \text { always interchange the }\end{aligned}$ always interchange th
indices on the basis indices on the basis
vectors rather than on the coefficients.
3. Tensor-(continued) \quad More Definitions

\[\)| Symmetric Tensor |
| :---: |
| $\underline{\underline{M}}=\underline{\underline{M^{T}}}$ |
| $M_{i k}=M_{k i}$ |\(\quad e.g.

\]

Antisymmetric Tensor
e.g.

$$
\begin{aligned}
& \underline{M}=-\underline{M}^{T} \\
& M_{i k}=-M_{k i}
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -5 \\
3 & 5 & 0
\end{array}\right)_{123}
$$

3. Tensor - (continued) More Definitions Tensor order

Scalars, vectors, and tensors may all be considered to be tensors (entities that exist independent of coordinate system). They are tensors of different orders, however. order $=$ degree of complexity
 tensors
Mathematics Review Polymer Rheology
3. Tensor - (continued) More Definitions

\[\)| Tensor Invariants |
| :--- |

\]

Scalars that are associated with tensors; these are numbers that are independent of coordinate system.
vectors: $\quad|v|=v \quad$ The magnitude of a vector is a scalar associated with the vector

It is independent of coordinate system, i.e. it is an invariant.
tensors: $\quad A \quad$ There are three invariants associated with a second-order tensor.

Tensor Invariants

$$
I_{\underline{\underline{A}}} \equiv \operatorname{trace} \underline{\underline{A}}=\operatorname{tr} \underline{\underline{A}}
$$

For the tensor written in Cartesian coordinates:

$$
\text { trace } \underline{\underline{A}}=A_{p p}=A_{11}+A_{22}+A_{33}
$$

$$
\begin{aligned}
& I I_{\underline{\underline{A}}} \equiv \operatorname{trace}(\underline{\underline{A}} \cdot \underline{\underline{A}})=\underline{\underline{A}}: \underline{\underline{A}}=A_{p k} A_{k p} \\
& I I I_{\underline{\underline{A}}} \equiv \operatorname{trace}(\underline{\underline{A}} \cdot \underline{\underline{A}} \cdot \underline{\underline{A}})=A_{p j} A_{j h} A_{h p}
\end{aligned}
$$

Note: the definitions of invariants written in terms of coefficients are only valid when the tensor is written in Cartesian coordinates.

