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5. Curvilinear Coordinates

These coordinate systems are ortho-normal, but they are not 
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

Cylindrical zr ,,θ zr eee ˆ,ˆ,ˆ θ

Spherical φθ ,,r φθ eeer ˆ,ˆ,ˆ

See 
figures 
2.11 and 
2.12
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5. Curvilinear Coordinates (continued)
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First, we need to write this 
in cylindrical coordinates.
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5. Curvilinear Coordinates (continued)
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Result:

Now, proceed:

(We cannot use 
Einstein notation 
because these are 
not Cartesian 
coordinates)
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5. Curvilinear Coordinates (continued)
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5. Curvilinear Coordinates (continued)

This term is not intuitive, 
and appears because the 

basis vectors in the 
curvilinear coordinate 

systems vary with position..
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5. Curvilinear Coordinates (continued)

Final result for divergence of a 
vector in cylindrical coordinates:
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5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

•The basis vectors are ortho-normal

•The basis vectors are non-constant (vary with position)

•These systems are convenient when the flow system 
mimics the coordinate surfaces in curvilinear coordinate 
systems.

•We cannot use Einstein notation – must use Tables in 
Appendix C2 (pp464-468).
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6. Vector and Tensor Theorems 
and definitions

In Chapter 3 we review Newtonian fluid 
mechanics using the vector/tensor 
vocabulary we have learned thus far.  We 
just need a few more theorems to prepare 
us for those studies.  These are presented 
without proof.

Gauss Divergence Theorem

����� ⋅=⋅∇
SV

dSbndVb ˆ

This theorem establishes the utility of the 
divergence operation.  The integral of the 

divergence of a vector field over a volume is 
equal to the net outward flow of that property 

through the bounding surface.

outwardly
directed unit 
normal
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule
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velocity of the surface element dS
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6. Vector and Tensor Theorems (continued)

Substantial Derivative ),,,( tzyxf

x-component 
of velocity 
along that path
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time rate of 
change of f 
along a chosen 
path

When the chosen path is 
the path of a fluid 
particle, then these are 
the components of the 
particle velocities.

Consider a function
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6. Vector and Tensor Theorems (continued) Substantial Derivative
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Substantial Derivative

When the chosen 
path is the path of 
a fluid particle, 
then the space 
derivatives are the 
components of the 
particle velocities.


