5. Curvilinear Coordinates

Cylindrical	\bar{r}, θ, z	$\hat{e}_{\bar{r}}, \hat{e}_{\theta}, \hat{e}_{z}$		
Spherical	r, θ, ϕ	$\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}$		See
:---				
figures				
2.11 and				
2.12				

These coordinate systems are ortho-normal, but they are not constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.
5. Curvilinear Coordinates (continued)

5. Curvilinear Coordinates (continued)

$$
\begin{aligned}
\text { Result: } \quad \nabla & =\left(\frac{\partial}{\partial x} \hat{e}_{x}+\frac{\partial}{\partial y} \hat{e}_{y}+\frac{\partial}{\partial z} \hat{e}_{z}\right) \\
& =\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{z} \frac{\partial}{\partial z}
\end{aligned}
$$

Now, proceed:
(We cannot use
Einstein notation because these are not Cartesian coordinates)

$$
\nabla \cdot \underline{v}=\left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{z} \frac{\partial}{\partial z}\right) \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)
$$

$$
=\hat{e}_{r} \frac{\partial}{\partial r} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+
$$

$$
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+
$$

$$
\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)
$$

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology
5. Curvilinear Coordinates (continued)

$\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot v_{r} \hat{e}_{r}=\hat{e}_{\theta} \cdot \frac{1}{r} \frac{\partial v_{r} \hat{e}_{r}}{\partial \theta}$
$=\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right)$

5. Curvilinear Coordinates (continued)

$$
\begin{aligned}
& \hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot v_{r} \hat{e}_{r}= \hat{e}_{\theta} \cdot \frac{1}{r} \frac{\partial v_{r} \hat{e}_{r}}{\partial \theta} \\
&=\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right) \\
&=\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \hat{e}_{\theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right) \\
&=\frac{1}{r} v_{r} \quad \begin{array}{l}
\text { This term is not intuitive, } \\
\text { and appears because the } \\
\text { basis vectors in the } \\
\text { curvilinear coordinate }
\end{array} \\
& \text { systems vary with position.. }
\end{aligned}
$$

5. Curvilinear Coordinates (continued)

Final result for divergence of a vector in cylindrical coordinates:

$$
\begin{array}{r}
\nabla \cdot \underline{v}=\hat{e}_{r} \frac{\partial}{\partial r} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\left.\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}\right)+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\nabla \cdot \underline{e_{z}}=\frac{\partial v_{r}}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right) \\
\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r}+\frac{\partial v_{r}}{\partial z}
\end{array}
$$

5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

-The basis vectors are ortho-normal
-The basis vectors are non-constant (vary with position)
-These systems are convenient when the flow system mimics the coordinate surfaces in curvilinear coordinate systems.
-We cannot use Einstein notation - must use Tables in Appendix C2 (pp464-468).
6. Vector and Tensor Theorems and definitions

In Chapter 3 we review Newtonian fluid mechanics using the vector/tensor vocabulary we have learned thus far. We just need a few more theorems to prepare us for those studies. These are presented without proof.

Gauss Divergence Theorem

outwardly
directed unit

$$
\iiint_{V} \nabla \cdot \underline{b} d V=\iint_{S} \hat{n} \cdot \underline{b} d S
$$

normal

This theorem establishes the utility of the divergence operation. The integral of the divergence of a vector field over a volume is equal to the net outward flow of that property through the bounding surface.

© Faith A. Morrison, Michigan Tech U.

Mathematics Review
Polymer Rheology
6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals
constant limits $I=\int_{\alpha}^{\beta} f(x, t) d x$

$$
\begin{aligned}
\frac{d I}{d t} & =\frac{d}{d t} \int_{\alpha}^{\beta} f(x, t) d x \\
& =\int_{\alpha}^{\beta} \frac{\partial f(x, t)}{\partial t} d x
\end{aligned}
$$

one
dimension, constant limits
6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals

$$
\begin{aligned}
J & =\int_{\alpha(t)}^{\beta(t)} f(x, t) d x \\
\frac{d J}{d t} & =\frac{d}{d t} \int_{\alpha(t)}^{\beta(t)} f(x, t) d x \\
& =\int_{\alpha(t)}^{\beta(t)} \frac{\partial f(x, t)}{\partial t} d x+\frac{d \beta}{d t} f(\beta, t)-\frac{d \alpha}{d t} f(\alpha, t)
\end{aligned}
$$

one
dimension, variable limits
6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals
\(\left.\left.$$
\begin{array}{rl}J=\iiint_{V(t)} f(x, y, z, t) d V \\
\frac{d J}{d t} & =\frac{d}{d t} \iiint_{V(t)} f(x, y, z, t) d V \\
& =\iiint_{V(t)} \frac{\partial f(x, y, z, t)}{\partial t} d V+\iint_{S(t)} f\left(\underline{v}_{\text {sufface }} \cdot \hat{n}\right) d S\end{array}
$$\right\} \begin{array}{l}

velocity of the surface element d S\end{array}\right\}\)| three |
| :--- |
| dimensions, |
| variable |
| limits |

6. Vector and Tensor Theorems (continued)

Substantial Derivative \quad Consider a function $f(x, y, z, t)$

$$
\begin{aligned}
& d f \equiv\left(\frac{\partial f}{\partial x}\right)_{y z t} d x+\left(\frac{\partial f}{\partial y}\right)_{x z t} d y+\left(\frac{\partial f}{\partial z}\right)_{x y t} d z+\left(\frac{\partial f}{\partial t}\right)_{x y z} d t \\
& \frac{d f}{d t} \equiv\left(\frac{\partial f}{\partial x}\right)_{y z t} \frac{d x}{d t}+\left(\frac{\partial f}{\partial y}\right)_{x z t} \frac{d y}{d t}+\left(\frac{\partial f}{\partial z}\right)_{x y t} \frac{d z}{d t}+\left(\frac{\partial f}{\partial t}\right)_{x y z}
\end{aligned}
$$

time rate of
change of f
along a chosen
path
x-component of velocity along that path

When the chosen path is the path of a fluid particle, then these are the components of the particle velocities.

Mathematics Review

Polymer Rheology

6. Vector and Tensor Theorems (continued) Substantial Derivative

When the chosen path is the path of a fluid particle, then the space derivatives are the components of the particle velocities.

$$
\left(\frac{d f}{d t}\right)_{\substack{\text { along } \\ \text { a particle } \\ \text { path }}}^{\left(\frac{\partial f}{\partial x}\right)_{y z t} v_{\underline{v}}+\left(\frac{\partial f}{\partial y}\right)_{x z t} v_{y}+\left(\frac{\partial f}{\partial z}\right)_{x y t}^{v} v_{z}+\left(\frac{\partial f}{\partial t}\right)_{x y z}}
$$

$$
\left(\frac{d f}{d t}\right)_{\substack{\text { along } \\ \text { a particle } \\ \text { path }}} \equiv \frac{D f}{D t}=\frac{\partial f}{\partial t}+\underline{v} \cdot \nabla f
$$

Substantial Derivative

