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Overview 
Experimentation involves the observation and measurement of a physical property or a 
characteristic of something. A fundamental rule of scientific measurement states that it is never 
possible to exactly measure the true value of any characteristic, only approximations of the true 
value. For this reason, it is the responsibility of the engineers and scientists to report all measured 
values along with an estimation of the uncertainty in the measurement. The process of estimating 
the true value of the measurement and its associated uncertainty is called error analysis. 
 
Furthermore, when a measured value is reported directly, the error analysis is complete when the 
error associated with that value is estimated and reported. In other cases, the measured value is to be 
combined mathematically with other measured values and the calculated result is the final reported 
value. In this case, the errors associated with each measured value must be combined to estimate the 
uncertainty in the result. This additional calculation is called propagation of error. This paper 
presents a procedure for error analysis and propagation of error for use in Unit Operations 
Laboratory reports. 
 
Sources of Measurement Error 
1. Human Error: This is also referred to as Gross Error. Careful planning and execution of your 

experiment should prevent “mistakes.” 
 
2. Reading Error: This is a combination of the instrument’s accuracy and precision and can be 

found in the manufacturer’s specifications for the instrument. 
a. Accuracy refers to an instrument’s ability to measure the true value of a characteristic. This 

describes how close the measurement is to the true value. 
b. Precision refers to the randomness of the measured value due to variation in the measuring 

device. This describes the repeatability of the measurement. 
c. Reading error is treated under the general categories of Systematic Error and Random Error. 

 
3. Systematic Error: This is sometimes called determinate error. 

a. Has the same sign and magnitude for identical conditions; systematic error is predictable. 
b.  Sources of systematic error: 

i. Mis-calibration of instruments. This class of systematic error refers to the 
instrument’s accuracy. Could be due to a zero offset or improper instrument span. 

ii. Natural phenomena or inherent characteristics of the instrument.  Could be due to 
hysteresis or the linearization of a non-linear response, or could be due to the method 
used, i.e. measuring surface temperature of a pipe to represent fluid temperature. 

iii. Consistent operator error, i.e. parallax. 
c. Often can be removed or compensation made: 

i. Recalibration, adjusting zero and span 
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ii. Correction factors or calibration curves 
iii. Improved procedures 
iv. Comparisons to other methods. 

d. Must be corrected before data are reported or used in subsequent calculations. 
 
4. Random Error: This is a combination of the randomness of the measurement process and the 

randomness of the characteristic you are measuring. It is also called indeterminate error. 
a. Can be positive or negative and has varying magnitude, is not predictable. 
b. You can not differentiate the source of the fluctuations caused by the measuring instrument 

from those of the process itself. 
c. Sources of random error:  

i. Random process fluctuations. i.e. Equipment “goblins”, moon phase, miscellaneous 
ii. Random instrument fluctuations (referred to in the instrument manufacturer’s data 

sheet as instrument precision) 
iii. Degree of subdivision of instrument scale and your ability to precisely read the scale 

d. Random error is quantified using Statistical methods. 
 
Uncertainty in Values Obtained from Empirical Relationships 
Oftentimes you will be comparing your measured values with values calculated from empirical 
relationships. These empirical values will also have an error (or uncertainty) associated with them. 
Theoretical values for friction factors, heat transfer coefficients, mass transfer coefficients, etc. are 
usually obtained from correlating equations and diagrams and have an often overlooked error 
referred to as “engineering accuracy”. Unless the specific reference states otherwise, engineering 
accuracy can be assumed to be in the range of 10-20%; therefore, using a ±15% uncertainty is 
recommended.  
 
Experimental Planning and Data Collection Activities 
With many of the experiments in Unit Operations Lab you will be asked to measure a unit 
operation’s performance at several different steady state conditions. To report the result at each 
steady state, you will collect data for two reasons. First, you will verify that the unit operation is at 
steady state. Second, you will make a number of repeat measurements at this steady state at regular, 
predetermined time intervals so that you can predict the true value of each measurement and 
estimate its associated error. 
 
An important first step in planning experimental work is to identify what the experimental results 
should look like. From there, determine what needs to be measured and how it should be measured. 
In many cases there are choices in the type of measuring instrument you could use. Quite often, an 
instrument or method that yields high precision measurements takes more time or effort to use. 
Using trial calculations, determine the effect of that instrument’s precision on the final calculated 
results and select an appropriate instrument. Instrument precision can usually be obtained from the 
manufacturer’s data sheet. This value is your reading error and should be recorded in the laboratory 
notebook along with the model and serial number of the device long before you start any lab work. 
 
Another step in the experimental planning process is to determine the number of replicates required 
to characterize each measurement and the measurement’s uncertainty. An infinite number of 
replicates can be averaged together to report the true value of the measurement exactly. Time, 
resources, and other practical limitations prevent this. So, determine how many replicates you will 
need in order to characterize the measurement. Minimally, it takes 2 replicates to calculate a 
standard deviation. However, be aware that a standard deviation calculated around 2 or 3 replicates 
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has little or no meaning and will result in a large associated uncertainty. Five values should be 
considered as a minimum. Finally, check that the data gathering activities fit within the scheduled 
laboratory time. 
 
Before starting any experimentation on lab day, it is your responsibility to verify that measuring 
instruments are properly calibrated. If possible, two-point or three-point calibrations are performed. 
For example, a temperature device can be placed in an ice bath, checked at room temperature, and 
in boiling water to verify the calibration; or several standard solutions can be carefully prepared and 
the sensor range checked at these known points. Record any zero or calibration offsets in your 
laboratory notebook. Prepare a calibration curve if necessary. Add appropriate columns in your 
spreadsheet to correct measured values. If a two-point calibration is not possible, then minimally 
check the zero or “at rest” reading against a known and trusted device. For example, pressure 
gauges can be checked at atmospheric pressure. 
 
While collecting data, check for gross mistakes and repeat experiments if necessary. Early in the 
day, check each operator for possible systematic error, i.e. from parallax or improper reading 
technique and correct immediately. Any remaining variation in replicated measured values is 
treated as random error and must be quantified using statistics 
 
Quantifying Random Error – Statistical Analysis of Replicated Data 
When reporting the results of a measured value for Unit Operations Lab you will typically report 
the mean value of your measured replicates along with an estimated standard error. Unfortunately, 
there is no single method for calculating the true value of a statistic in all situations. For example: in 
one case, multiple replicates of steady state data can be recorded at some set frequency. In another 
situation, one or more representative samples of a larger batch of material are set aside to perform 
an analytical measurement. These situations are very different and must be treated differently. 
 
In either case, the goal in measurement is to determine the true value of something. If an engineer 
could take all the possible measurements (replicates) of the characteristic, the mean value of these 
replicates would be the true value of what is being measured. This would be called the grand 
average or population mean and is represented by the Greek letter, µ. We could also calculate a 
standard deviation around this grand average to quantify the dispersion of data around the average.  
 
Since time and resources are limited, it is usually not practical to take all possible measurements. 
So, for this example suppose that there are N measurements of a quantity y, (i.e.: y1, y2, y3, y4, ...., 
yN). These N measurements represent a subset of all the possible replicates that could have been 
measured and therefore represent a “sample” of the entire population. The sample average is called 
the sample mean and is represented by the familiar symbol, x . Since the sample mean was not 
calculated from the entire population, it can be expected that the sample mean will differ slightly 
from the population mean (the true value of the measurement.) A statistic called the Standard Error 
of the Means can then be calculated to estimate the difference between the sample mean and the 
population mean.  
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A suggested procedure for reporting the sample mean and calculating the uncertainty follows: 
 
1. Calculate the Mean Value of the Data Set  
 

The mean value ( x ) is defined by: 

x
x

N

i
i
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= =
∑

1 . (Eq. 1) 

 
2. Calculate the Sample Variance 

The sample variance is the sum of the squares of the difference between each measured value 
and the sample’s mean value, divided by the number of replicates minus one. Variance (σ2) is: 
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3. Calculate Average Standard Deviation of the Sample  

When a data set is small calculate an average standard deviation to describe the magnitude of 
the spread in the data. Average Standard Deviation is simply called Standard Deviation (σ) and 
is defined as the square root of the variance, i.e. the square root of the expression labeled Eq. 2. 
 

4. Make an Initial Estimation of the Standard Error (Measure of the deviation of x from the true 
value) Also called the Standard Error of the Means (SEM). SEM is defined statistically by: 
 

N
SEM σ

= . (Eq. 3) 

 
5. Compare the SEM to the Reading Error  

A measurement can be no more precise than the measuring instrument. Even if the recorded 
data shows no scatter (standard deviation of zero) there may still be an uncertainty in the data 
due to the reading error. 
Sources of reading error (eR) can be: 

Sensitivity of the instrument (the maximum change required for the instrument to respond) 
Degree of subdivision of the scale of the instrument (generally, one-half the smallest 
subdivision) or the display’s resolution. 

The value used for the reading error (eR) usually can be found in the manufacturer’s data sheet. 
If none is available, use ±½ the smallest increment of the device. 
Generally, some judgment and familiarity with the instrument are needed to come up with a 
good estimate of the reading error. 
 
Some considerations for reading error in UO Lab: 

What are the scale subdivions of the rotometer or pressure gauge? 
How sensitive are the platform scales? 
How precisely can you find the endpoint in titrating, +/- how many ml? 
What is the manufacturer’s published accuracy for the instrument? 
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6. Adjust the Standard Error for a Combined Random Error and Reading Error 

Once a value is determined for the reading error (eR ) it is compared to the standard deviation 
(σ) from (Eq. 2) to obtain the standard error as follows: 
 
If eR << σ, then: 

   SEM = eS N
σ

= . (Eq. 4) 

 
But, if eR >> σ, use: 

3
e=e R

S . (Eq. 5) 

(The origin of the 3  in Eq. 5 is the Poisson Distribution.) 
 
If eR and σ are of the same order of magnitude then use the average of the two errors: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

3
Re

N
σ

2
1=eS . (Eq. 6) 

 
It can be shown statistically that, for normally distributed data, the true value of x (the 
individual measurement) lies somewhere between: 
 

   x -  e   and x +   e   (with 68.3% confidence)

   x - 2e  and x +  2e  (with 95.0% confidence)

   x - 3e  and x +  3e  (with 99.7% confidence).

S S

S S

S S  
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ESTIMATION OF ERROR IN A CALCULATED RESULT 
When measured values are used in calculations, the error associated with each measured value will 
affect the uncertainty in the final calculated result. The error in each term of the equation must be 
combined with the error in the other terms. This is called Propagation of Error. An estimation of 
the error in the calculated result must be calculated and reported along with the result. 
 
Method: 
If y is the desired quantity and all the individual u, v, w, ... are the raw data needed to calculate y, 
we can represent the general function as: 
 y = f(u, v, w, ...). 
 
You would typically run a set of identical repeated experiments and find the individual values of u, 
v, w,... Next, calculate the mean value of each u, v, w, ... The mean value of y can be calculated by 
using the mean values of in the functional relationship: 
 y = f(u,v,w, ...).  
 
Then, to estimate the error associated with y, use either of the two following methods: 
A. Root Means Square Error (eRMS) 

The Root Mean Square Error has a basis in statistics: 
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where the mean values ( u v w, , ,...) are used to evaluate the derivatives in the above 
expression. 

The RMS Error is tedious to calculate by hand and is best suited to spreadsheets. 
 

B. Upper Estimate of the Propagated Error 
An upper limit to the error can be estimated as follows: 
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where the mean values ( u v w, , ,...) are used to evaluate the derivatives in the above expression. 
This method is easier to use for hand calculations. 
 
Note that eRMS < eUL always. Thus, using eUL will give a more conservative estimate of the 
error. 

 
SIGNIFICANT FIGURES 
When reporting a value and its associated error use the appropriate number of significant figures 
(SF). For measured values, the number of SF is a function of the precision of the measuring device. 
When a calculated result combines more than one measured or estimated value the correct number 
of SF is the same as that of the least of all the measured values. The correct number of SF for 
estimated error is typically one less than the number of SF of the calculated result (sometimes two, 
but oftentimes only one.)
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ERROR ANALYSIS OF FLOW RATE BY REPLICATED “PAIL AND SCALE” 
MEASUREMENTS 
One common method of measuring flow rate is to measure the mass of liquid collected in a barrel 
or pail (wF-w0) over a time interval (t). If replicated measurements (N) have been made of the final 
and initial mass (wF,j and w0,j) and the time interval (tj), it would be incorrect to determine the mean, 
variance, etc. of (wF, w0, and t) and then calculate the mass flow rate (m) and its error. The correct 
procedure would be as follows: 
 
1. Calculate the mass flow rate for each measurement (mj): 
 

 &
( ), ,m
w w

tj
F j j

j
=

− 0    (j = 1,2,3, . . .,N) . 

 
2. Calculate the mean value of the flow rate ( &m ): 
 

 &

&

m
m

N

j
j

N

= =
∑

1 . 

 
3. Calculate the standard deviation of : &m
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4. Determine the reading error associated with each mass flow rate ( ) due to propagation of the  
     reading errors in wF, w0, and t: 

&mj
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5. Determine the average reading error associated with the mass flow rate: 
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6. Combine the reading error and the standard deviation as before: 
 
      If eR ,m << σm, then 
 

 e
NS m
m

, =
σ . 

 
      If eR ,m >> σm, then 
 

 e
e

S m
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,
,=
3

. 

 
    If eR ,m and σ  are of the same order of magnitude then  m
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ERROR ANALYSIS OF FLOW RATE BY REPLICATED MEASUREMENTS OF CHANGE IN 
LIQUID LEVEL IN A TANK 
One common method of measuring volumetric flow rate (Q) is to measure the change in liquid level 
in a tank (hF-h0) over a time interval (t). If replicated measurements (N) have been made of the final 
and initial liquid levels (hF,j and h0,j) and the time interval (tj), an error analysis can be performed in 
the same way as for the “pail and scale” method: 
 
1. Calculate the volumetric flow rate for each measurement (Qj): 
 

 Q

D h h

tj

F j

j
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−
π 2

04
( )

      (j = 1,2,3, ... ,N) . 

 
where D is the inside diameter of the tank (assumed to have no error associated with it). 
 
2. Calculate the mean value of the flow rate ( Q ): 
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Q
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3. Calculate the standard deviation of Q: 
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4. Determine the reading error associated with each flow rate (Qj) due to propagation of the  
     reading errors in hF, h0, and t: 
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5. Determine the average reading error associated with the flow rate: 
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6. Combine the reading error and the standard deviation as before: 
 
      If eR ,Q << σQ, then 
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NS Q
Q
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σ

. 

 
      If eR ,Q >> σ , then Q
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EXAMPLE -- ERROR IN CALCULATED VALUE OF THE OVERALL HEAT TRANSFER 
COEFFICIENT 
The overall heat transfer coefficient (U) is obtained from: 
 

 U Q
A T Th c LM

=
−( )
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The error in the calculated value of U due to errors in Q, A, and the temperatures (Th2, Th1, Tc2, Tc1) 
is given by: 
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If (Th-Tc)2 and (Th-Tc)1 are approximately equal then: 
 

 LMTD T T T Th c h c≈ − + −
1
2 2 1[( ) ( ) ]  
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2 2 2 e 1 . 
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TABLE OF NOMENCLATURE 
A  Heat Transfer Area 

D  Inside Diameter of Tank 

eS  Standard Error 

eR   Reading Error 

hF, h0  Final and Initial Liquid Levels, respectively, in Volumetric Flow Rate Measurement 

i, j  Refer to a Particular Sample or Data Point 

LMTD Log-Mean Temperature Difference 

m   Mass Flow Rate 

N  Number of Data (Sample) Points 

Q  Volumetric Flow Rate; Heat Transfer Rate 

σ  Standard Deviation 

σ2  Variance 

Th, Tc  Temperature of Hot and Cold Fluids, respectively 

t  Time Interval for Flow Rate Measurement 

U  Overall Heat Transfer Coefficient 

u, v, w  Independent Variables Used in a Calculation 

wF, w0  Final and Initial Mass, respectively, in “Pail and Scale” Method 

x   Mean Value of x 

xi  Sampled Value of x 

y  Dependent Variable Determined in a Calculation 

 

REFERENCES 
Bragg, G.B., Principles of Experimentation and Measurement, Prentice-Hall, Englewood Cliffs, NJ, 
 (1974). 
 
Barry, A.B., Errors in Practical Measurement in Science, Engineering, and Technology, Wiley, 
NY,  (1978). 
 
Lyon, A.J., Dealing with Data, Pergamon Press, NY, (1970). 
 
 

 11


