CM2200

Introduction to Minerals and Materials Processing

Curricular Designation: Elective

Catalog Description:

Fundamentals of minerals processing, raw materials production, and extractive metallurgy, including primary metals production. MWF 1:05-1:55 PM, Room 211, Chemical Sciences and Engineering Building. 3.0 credits: 3 lecture, 0 recitation, 0 laboratory

Textbooks(s) and/or Other Required Materials:

Mineral Processing Technology, by B. A. Wills

Prerequisies by Topic:

High-school level physics, chemistry, and mathematics.

Course Objectives:

- Master the principles involved in the extraction of metals, commodity chemicals, and other materials from natural minerals and recycled industrial byproducts.
- Familiarity with the physical, chemical, and thermal treatments of minerals needed to prepare them for further processing and to extract useful materials from low-value feedstocks.
- Familiarity with the unit operations used in processing particulate materials and how they are integrated to create an entire process.
- Introduction to technical report writing.

Topics Covered:

- 1. Process Accounting and Control
- 2. Particle Size Analysis
- 3. Fine Particle Production
- 4. Crushers and Grinding Mills
- 5. Industrial Particle Size Control
- 6. Screens and Gravity Classifiers
- 7. Hydrocyclones
- 8. Particulate Separation Processes
- 9. Heavy-Media Separations
- 10. Jigging and Hindered Settling
- 11. Flowing Film Spirals, Tables, and Cones
- 12. Froth Flotation
- 13. Column Flotation
- 14. Magnetic Separators
- 15. Electrostatic Separators
- 16. Dewatering and Materials Handling
- 17. Thickeners
- 18. Filters and Centrifuges
- 19. Primary Metal Production
- 20. Smelting and Refining Basics
- 21. Hydrometallurgy Basics
- 22. Copper, Aluminum, Steel, Precious Metals, Rare Metals

Class/Laboratory Schedule (note: 1 hour = 50 minutes):

Lecture: 40.5 hours = 3 hours/week for 14 weeks; one 1.5 h holiday Laboratory: 2 hours, by arrangement

Plant Trip: 6 hours, to an operating mineral processing or primary metal production plant

Contribution of Course to Meeting the Professional Component: Mathematics and Basic Sciences

Relationship of Course to Program Outcomes:

Outcome	Topics and Level of Coverage			Comments/Examples
	Important	Moderately	Not	
	_	important	covered	
a) Apply knowledge of mathematics, science, and engineering	`1-22			All topics are math, science, and engineering.
b) Design and conduct experiments, analyze and interpret data			X	
c) Design a system, component, or process to meet desired needs			X	
d) Function on a multi- disciplinary team			Х	
e) Identify, formulate, and solve engineering problems		1-22		
f) Understand professional and ethical responsibility		1		
g) Communicate effectively		1-22		Formal reports required for laboratory sessions and plant trip
h) Understand global and social impact of engineering solutions			Х	
i) Recognize the need for life- long learning			Х	
j) Demonstrate knowledge of contemporary issues			Х	
k) Use the techniques and tools of modern engineering practice			Х	

Relationship of Course to AIChE Program Criteria:

Outcome	Topics a	nd Level of C	Comments/Examples	
	Important	Moderately		
		important	covered	
A-1) Thorough grounding in chemistry and a working				
knowledge of advanced				
chemistry such as				
organic, inorganic, physical,	`	х		
analytical, materials				
chemistry, or biochemistry,				
selected as appropriate to the				
goals of the program				
A-2) Working knowledge,				Extensive application of mass
including safety and				balance and process
environmental aspects of	Х			accounting
material and energy balances				
applied to chemical processes				
A-3) Thermodynamics of				
physical and chemical		Х		
equilibria				
A-4) Heat, mass, and			Х	
momentum transfer				
A-5) Chemical reaction			Х	
engineering				
A-6) Continuous and stage-	х			
wise operations				
A-7) Process dynamics and		х		
control				
A-8) Process design			Х	
A-9) Modern experimental			Х	
and computing techniques				<u> </u>

Prepared by:

S. K. Kawatra, Professor of Chemical Engineering, August 26, 2010