HEAT TRANSFER - summary

(What have we learned?)

homogeneous materials

\[\frac{q_x}{A} = -k \frac{dT}{dx} \]

(Brownian motion)

inhomogeneous materials

\[h(T_s - T_b) = \frac{q_x}{A} \]

[at boundaries where physics is complex]

[Legendre polynomials]
fluid in motion (gas, liquid)

Microscopic E-BAR (homogeneous mat.)

\[\rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{T} \right) = k \nabla^2 T + S \]

- time rate of change
- convection
- conduction
- current rxn
"Lumped" parameters (used in B.C.)

\[
h = \text{heat transfer coefficient}
\]

\[
\begin{align*}
 h (R_e, Pr, \frac{L}{D}) \\
 h (Gr, Pr, \frac{L}{D}) \\
 h (\text{regime of system}) \\
 \Delta T
\end{align*}
\]

\[
T_{\text{bulk}} \quad h \quad T_{\text{surface}}
\]
Radiative Heat Transfer

Stefan-Boltzmann Law

\[\text{Emitted black body} = \text{Stefan-Boltzmann constant} \times T^4 \]

\[P\nu = nRT \]

Also absolute temp

In \(K \) or \(\text{(absolute temp)} \)
Emission
\[\text{Emission} = \frac{\text{Emissivity}}{\text{Area}} \]
\[\varepsilon = \frac{\text{Emissivity}}{\text{Temperature}} \]
\[\varepsilon > 0 \]
Absorption
\[\text{Absorption} = \alpha \times \text{Incident} \]
\[\alpha < 1 \]
Kirchhoff's Law
\[\alpha = \varepsilon \] (Nice Simplification)
Radiation net heat xfer:

\[\text{Energy transfer to } = A \varepsilon \sigma \left(T_s^4 - T_b^4 \right) \]

(\text{Can write as heat xfer coeff, if desired})

\[\text{Use: See notes on heat shield} \]

\[\text{See example w/ hot pipe} \]
Final Topic:

Designing a Heat Exchanger

Double Pipe

How can I estimate the overall heat transfer coefficient U for a heat exchanger I am designing?
\[T_1 \rightarrow A \rightarrow T_2 \]

Outside diameter of inner pipe:

\[A = \pi D L \]

\[Q = A U \Delta T_{\text{em}} \]

E-Ba2 inside:

\[\Delta H = Q_{in} \]

\[Q_{in} = m C_p \Delta T \]

or \[m \Delta H \text{ for condensing} \]

Which physics is it? Answer: up to you.
- Forced convection: pump
 - fan

- Natural (free) convection: vertical design
 - natural connection "cells"

- Phase change: boiling condensation
What determines performance (how much Q) of a heat exchanger?

- material of construction (k steel)
- what fluid is on inside outside
We have solved this geometry before! See lecture 5.
Example 4: Heat flux in a cylindrical shell, Newton's law of cooling boundary Conditions

Results: Radial Heat flux in an Annulus

\[
T - T_{b2} = \frac{(T_{b1} - T_{b2}) \left(\ln \left(\frac{R_2}{r} \right) + \frac{k}{h_2R_2} \right)}{k \frac{1}{h_2R_2} + \ln \left(\frac{R_2}{R_1} \right) + \frac{k}{h_1R_1}}
\]

\[
\frac{q_r}{A} = \frac{(T_{b1} - T_{b2})}{\left(\frac{1}{h_2R_2} + \frac{1}{k} \ln \left(\frac{R_2}{R_1} \right) + \frac{1}{h_1R_1} \right) \left(\frac{1}{r} \right)}
\]

Evaluate at \(r = R_2 \) the outer radius (heat flux into surface)

© Faith A. Morrison, Michigan Tech U.
Heat flux through an annular pipe with Newton's law of cooling BC.

\[\frac{q_r}{A} = \frac{T_{b_1} - T_{b_2}}{\left(\frac{1}{h_2 R_2} + \frac{1}{k} \ln \frac{R_2}{R_1} + \frac{1}{h_1 R_1} \right)^\frac{1}{n}} \]

\[q_r \bigg|_{R = R_2} = A (T_{b_1} - T_{b_2}) \left[\frac{1}{h_2 R_2} + \frac{1}{k} \ln \frac{R_2}{R_1} + \frac{1}{h_1 R_1} \right]^\frac{1}{n} \]
• This is the result for a cross section of a long pipe.

• For a double-pipe heat exchanger, \(\Delta T \) driving varies along the length from 0 to the tube.

• We replace \(T_1 - T_2 \) with \(\Delta T_{\text{log mean}} \) or correct average driving force for heat transfer for double-pipe H.E.
\[Q = A \Delta T_{\text{m}} \left(\frac{1}{R_2} \right) \]

This is called

Sizing a heat exchanger

get \(h_1, h_2 \) from the appropriate correlation depending on the design (laminar forced convective, turbulent forced convective, free convective, etc.)