Homework 3 CM3110 Morrison

Numbered problems are from the Text; Lettered problems are on the next page.

Module	Number	Topics	Assigned Problems	Stretch Problems
3	1	pipe flow: pressure drop from Q	А	
3	2	pipe flow: flow rate from pressure drop	В	
3	3	friction from fittings vs from long pipe	9.12	
3	4	friction from laminar flow	9.8	
3	5	flow through a slit Q given		E
3	6	hydraulic diameter	7.21	
3	7	non-circular cross-section (note typo: "isosceles" should be "equilateral."	7.33	
3	8	packed beds	G	
3	9	terminal velocity	8.3	
3	10	drag coefficient	2.13	
3	11	drag coefficient		2.14
3	12	boundary layers	2.30	
3	13	boundary layers		2.31
3	14	packed bed	F	
3	15	fluidized bed incipient fluidization	Н	
3	16	drag coefficient	8.47	
3	17	drag coefficient	8.49	
3	18	flow around a sphere (sketch)	8.6	
3	19	creeping flow around sphere	8.11	
3	20	creeping flow around sphere	8.12	
3	21	falling sphere with drag (see ex 8.8)		8.19
3	22	throw a ball (see example 8.8)		8.20
3	23	momentum boundary layer (words)	8.33	
3	24	streamlining, pressure drag (words)	8.46	
3	25	macro versus micro momentum bal	9.4	
3	26	60° expanding bend-macro momentum	9.20 (getting the vector)	9.20
3	27	compare str & U tube-macro momentm		9.24
3	28	90° expanding bend-macro momentum	9.19 (getting the vector)	9.19

A. What is the pressure drop in 200.0 meters of smooth horizontal copper tubing of inner diameter 1.5 cm = 0.015 m? Water at $25^{o}C$ is flowing at $1.31 \times 10^{-2} m/s$ average velocity. Please give your answer in *Pa*. Answer: 330 *Pa*

B. What is the average velocity $\langle v \rangle (m/s)$ for water $(25^{\circ}C)$ flowing in a horizontal straight pipe under a driving pressure difference of $\Delta p = 1.83 \times 10^{6} Pa$? (inner diameter is 0.020m, length is $2.0 \times 10^{2} m$). Answer: 4.5 m/s

E. (STRETCH) Water at $25^{\circ}C$ is forced through a narrow slit that is $1.0 \ mm$ by $50. \ mm$ in cross section and $50.0 \ cm$ long. The flow rate through the slit is $96 \ cm^3/s$. What is the driving pressure? Answer: $3.0 \ psig$. (Hint: The Poiseuille number may be taken to be that of an infinite slit.)

- F. Please answer the following (no calculations required)
 - a. When fluid flows at volumetric flow rate Q through a cylindrical packed bed reactor (height L and diameter D) explain how we can calculate the expected pressure drop across the length of the bed.
 - b. What quantities would we need to know about the bed to determine the pressure drop? Please be specific and complete.

G. (Example 7.16 for 8mm diameter column; page 564 Morrison). An 8.0 mm diameter chromatography column consists of a packing with a void fraction $\varepsilon = 0.39$ and a specific surface area $a_v = 720 cm^{-1}$. What pressure drop per unit length ($\Delta p/L$) must be applied to drive toluene through the column at 1.0 ml/min?

H. Pulverized coal is to be burned at atmospheric pressure in a fluidized bed. The density of the coal is approximately $1.0 \times 10^3 \frac{kg}{m^3}$. The mean particle diameter is 0.074mm and the gas, mostly air, has a viscosity of $1.0 \times 10^{-4}Pa \ s$. What is a reasonable estimate of the minimum fluidization velocity? Note that if a fluidized bed's void fraction ε is not known, Denn (*Process Fluid Mechanics*, Prentice Hall, 1980, p72) recommends the approximation $\left(\frac{\varepsilon^3}{1-\varepsilon}\right) \approx 0.091$. Answer: $v_0 = 3.2 \times 10^{-4} m/s$