

Exam Instructions:

i. You may work on the exam for up to two hours and 30 minutes (150 minutes).
ii. Please submit your exam work within 150 minutes of downloading the exam.
iii. Please be neat. Only neat answers will be granted partial credit. Please use a dark pencil or pen so that your work is readable once scanned.
iv. Significant figures always count.
v. Please box your final answers.
vi. Submit your work as a single PDF file; put your name on every page. (Genius Scan is a free app that can create a PDF from photos taken by your phone)
vii. Submit your exam study sheet as a separate PDF file; put your name on the first page (at a minimum)

1. (20 points) Water $\left(25^{\circ} \mathrm{C}\right)$ flows steadily in horizontal smooth coper tubing at 3.1 gpm (gallon per minute). What is the pressure drop in $2.5 \times 10^{2} \mathrm{~m}$ of copper tubing of inner diameter 0.015 m ? Give your answer in $P a$.
2. (20 points) What is the drag on a 2014 Toyota Prius going $7.0 \times 10^{1} \mathrm{mph}$ (= $102.6667 \mathrm{ft} / \mathrm{s}$)? Information on this model is given below. The density of air is $0.0766 \frac{l b_{m}}{f t^{3}}$. Give your answer in $l b_{f}$ and show how you arrive at your answer.

Vehicle

Drag Coefficient

Frontal Area

2014 Chevrolet Volt
0.28
23.7 square feet

2014 Toyota Prius
0.26
23.9 square feet
3. (20 points) Consider the three geometries described below.
a. What is the hydraulic diameter for each?
b. In laminar flow, what is the Fanning friction factor for each geometry as a function of Reynolds number?

1. Circular pipe of radius R
2. Equilateral triangle of side length a
3. Wide, narrow slit of gap H and width W
4. (20 points) List and describe three of the seven flow regimes for a fluidized bed. Which regime is the most desirable for chemical engineering purposes? Please limit your answer to about seven sentences at most.
5. (20 points) What is the magnitude of the horizontal force on the fluid in the 180° bend (return bend) shown in the figure below? The fluid in the bend is water at $68^{\circ} \mathrm{F}$ of density $62.4 \frac{l b_{m}}{f t^{3}}$, and viscosity $1.0 \mathrm{cp}=0.67197 \times 10^{-3} \frac{l b_{m}}{f t s}$, flowing at $3.0 \mathrm{ft}^{3} / \mathrm{s}$. The bend is made of tubing with a circular cross-sectional area of $0.0872665 \mathrm{ft}^{2}$ (inner diameter $=4.0 \mathrm{in}$). You may neglect the effect of gravity. The entrance pressure is 21 psia and the exit pressure is 19 psia. The flow is steady. Show how you arrive at your answer. Give your answer in $l b_{f}$.

Ref: Bird,
Stewart, and
Lightfoot, 1960

Fig. 7.D. Flow in a U-bend; both arms of bend are at the same elevation.

