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The mechanical energy balance is a type of energy balance that can tell us a great deal 
about simple flow systems. We begin with a discussion of conservation of energy and derive 
the mechanical energy balance (MEB). Finally, we show how to apply the MEB to simple 
flow systems.

0.1 Energy Balances

The First Law of Thermodynamics expresses a fundamental law of physics: energy is con-
served. Energy can be neither created nor destroyed (just like mass and momentum), but 
energy can move across the boundaries of a system, increasing or decreasing the total system
energy. 


Increase in the
Total Energy
in a system


 =




Net Energy
into the
system


 (1)

Energy can cross system boundaries in a variety of ways. One is in the form of heat, and
another is in the form of work. The third way energy enters or leaves a system is when it is
carried along by material entering or leaving the system, a mechanism know as convection.

∆Etotal + ∆Ėconvection = Qin + Won (2)

In the energy balance above, Etotal is the total energy of the system, Qin is the heat that
flows into the system, Won is the total work done on the system, and ∆Ėconvection is the net
energy out by convection.1 The heat that flows out is equal to −Qin, and the work done by
the system is equal to −Won.

1A term for net-energy-in placed on the right-hand side of equation 2 might seem a better choice for
notation. The choice is arbitrary. Net-energy-out is more convenient to use in steady state analysis, as we
will see in a moment.
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The total energy of the system has contributions from three types of energy, the
kinetic energy of the system, the potential energy of the system, and the internal energy of
the system (Felder and Rousseau, Tipler; Figure 1). The kinetic energy is the energy due

v

hz =

0=z

g

Figure 1: Energy is a property of a system. Energy may be stored in the state of a system,
for example, as kinetic energy stored in the speed of the system, as potential energy stored
in the position of the system in a potential field, or as internal energy stored in the chemical
state of a system.

to the speed at which the system is moving. To calculate the kinetic energy, first we must
choose a reference state; for kinetic energy the reference state is the system at rest, v = 0.
Relative to a system at rest, the kinetic energy of a system moving with speed v is given by


 Kinetic Energy

of a system moving
with speed v


 =

1

2
mv2 = Ek (3)

where m is the mass of the system, and v is the speed of the system.

The potential energy is the energy of the system by virtue of the position of the system
in a potential field. The most important potential fields are gravity and electromagnetic
fields. Potential energy in the Earth s gravitational field is the energy that the system has
by virtue of its being at a high elevation. A ball, for example, can roll down a hill and
exchange its potential energy (the energy it had stored in it simply by being at the top of
the hill) for kinetic energy (speed). Again energy is calculated relative to a reference state.
For potential energy we choose a reference elevation (or position), and then measure the
elevation of the system relative to that reference elevation. The potential energy of a system
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is therefore given by




Potential Energy
of a system at

elevation z


 = mg(z − zref) = Ep (4)

where m is the mass of the system, g is the acceleration due to gravity, and (z − zref) is
the elevation of the system relative to the reference elevation zref. Often zref is chosen to be
z = 0, and Ep = mgz.

Internal energy is the energy possessed by a system internally, that is, in its molecules
and atoms. The temperature of a system is one indicator of its internal energy, but a system
may store internal energy in its phase (being a solid versus being a liquid, for example) or
in its chemical composition (being a mixture of gasses H2 and O2 versus being a beaker of
H2O). Internal energy is kept track of with the defined function U . Again, the value of U
reported for a system is always with respect to some chosen reference state.




Internal Energy
of a system

with respect to
a chosen reference

state




= U (5)

The reference state for internal energy must fully describe the internal energy of the system.
For example we might choose liquid water at temperature 25oC as the reference state for
a calculation involving steam. We must specify temperature (25oC in this example), phase
(liquid), and chemical composition (H2O) in order to fully specify the internal energy.

The key to getting the most information out of energy balances is making the correct
the choice of system on which to base the calculations.

0.1.1 Closed Systems (No Convection)

Balances of many types, for example mass, energy, or momentum, may be performed on
any system, but not all systems are equally useful. A system is defined by boundaries
drawn around components of a physical situation under consideration. When we write our
balance equations we choose the boundaries and then note the quantities of mass, energy, or
momentum that cross the boundaries (Figure 2).

A closed system is a system that does not have any mass crossing its boundaries. For
closed systems, there is no mass coming in or going out and thus no convection of mass,
energy, or momentum.

For a closed system, the energy balance relates two states of the system, an initial state
and a final state. The changes in energy between initial and final states of the system are
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Figure 2: System boundaries are chosen for convenience of the calculation. Usually the sys-
tem boundaries are chosen so that the inputs and outputs to the system are locations where
fluid velocities, pressures, and/or elevations are known. Some problems require multiple
balances over different systems.

brought about by additions of energy through heat (Qin) and additions of energy through
work done on the system (Won).

∆Etotal = Qin + Won (6)

The total energy change of the system, ∆Etotal, is calculated by summing the changes in
potential, kinetic, and internal energy.

∆Etotal =




Final
Total Energy

of a closed system


−




Initial
Total Energy

of a closed system


 (7)

= (Ep,final + Ek,final + Ufinal) − (Ep,initial + Ek,initial + Uinitial) (8)

These terms combine to give the macroscopic closed system energy balance.

∆Ep + ∆Ek + ∆U = Qin + Won

Macroscopic
Closed System
Energy Balance

(9)

∆ here signifies final − initial.
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0.1.2 Open Systems

An open system is a system that has mass crossing its boundaries. For open systems,
convection or flow contributes to mass, energy, and momentum balances. In open systems,
balances are done on energy per time instead of on bare energy. Also, while for a closed
system we were concerned with changes in the system between two states, a final state and
an initial state, for open systems we will be concerned with the system at all times. We will
keep track of the state of the system by following the rate of accumulation of energy with
time. 


Rate of

Total Energy
Accumulation

in an open system


 =


 Rate of

Total Energy
into the system


−


 Rate of

Total Energy
out of the system


 (10)

For an open system, energy can enter the system in the same way as it did for a closed
system, through the addition of heat or through work performed on the system. The rate
of heat added per unit time will be denoted Q̇in, and the rate of work done on the system
per unit time will be called Ẇon. In addition, the streams that flow into and out of an
open system bring their potential, kinetic, and internal energies with them; these are the
convective terms. Equation 10 thus becomes

dEtotal

dt
=




Rate of
Total Energy
Accumulation

in an open system


 (11)

= Q̇in + Ẇon +

(
Rate of Energy in
through convection

)
−
(

Rate of Energy out
through convection

)
(12)

At steady state this equation becomes2




Rate of
Energy out

through
convection


−




Rate of
Energy in
through

convection


 = Q̇in + Ẇon (13)

∆Ėconvection = Q̇in + Ẇon (14)

Note that in equation 14 and in the remainder of this section on open systems, ∆ refers to
out − in.

To express the convective energy term ∆Ėconvection, we must take a sum of the energy
contributions to each stream. Each stream of mass flow rate ṁi brings with it an associated

2For more on unsteady state balances, see Felder and Rousseau.
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kinetic energy per unit mass Êk,i, an associated potential energy per unit mass Êp,i, and an

associated internal energy per unit mass Ûi. Thus for each stream

Ėi = ṁiÊk,i + ṁiÊp,i + ṁiÛi (15)

Using i to index the inflow streams and using j to index the outflow streams, we can now
sum over all the streams to obtain the net convective contribution ∆Ėconvection.∑

out

Ėj =
∑
out

(
ṁjÊk,j + ṁjÊp,j + ṁjÛj

)
(16)

=
∑
out

ṁjÊk,j +
∑
out

ṁjÊp,j +
∑
out

ṁjÛj (17)

∑
in

Ėi =
∑
in

(
ṁiÊk,i + ṁiÊp,i + ṁiÛi

)
(18)

=
∑
in

ṁiÊk,i +
∑
in

ṁiÊp,i +
∑
in

ṁiÛi (19)

∆Ėconvection =
∑
out

Ėj −
∑
in

Ėi (20)

=
∑
out

ṁjÊk,j +
∑
out

ṁjÊp,j +
∑
out

ṁjÛj

−∑
in

ṁiÊk,i −
∑
in

ṁiÊp,i −
∑
in

ṁiÛi (21)

=

(∑
out

ṁjÊk,j −
∑
in

ṁiÊk,i

)
+

(∑
out

ṁjÊp,j −
∑
in

ṁiÊp,i

)

+

(∑
out

ṁjÛj −
∑
in

ṁiÛi

)
(22)

∆Ėconvection = ∆Ėk + ∆Ėp + ∆U̇ (23)

Again, the ∆Ėk, ∆Ėp, and ∆U̇ in equation 23 refer to the differences between the sum of
contributions from the outlet streams minus the sum of contributions from the inlet streams
(out − in).

∆Ėk ≡ ∑
out

ṁjÊk,j −
∑
in

ṁiÊk,i (24)

∆Ėp ≡ ∑
out

ṁjÊp,j −
∑
in

ṁiÊp,i (25)

∆U̇ ≡ ∑
out

ṁjÛj −
∑
in

ṁiÛi (26)

Putting it all together we obtain a raw form of the open system macroscopic energy balance.

∆Ėp + ∆Ėk + ∆U̇ = Q̇in + Ẇon (27)

We can further refine the open system balance by recognizing that in open systems
the work term, Ẇon, contains two contributions, one due to moving parts that intrude into
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Figure 3: Work is force times displacement, and thus moving parts are one source of work.
Work associated with moving parts is called shaft work. Examples of systems with shaft
work present are centrifugal pumps, mixers, and turbines used in hydropower generation.

the system, such as shafts, turbines, and the internal workings of pumps (Figure 3). This
is called shaft work, and it is given the symbol Ẇs,on. The other contribution to Ẇon in an
open system is the work done by the fluid itself as it enters or leaves the system (Figure 4),
called flow work. Flow work is usually combined with the convective terms as follows.

A stream entering a chosen open system flows with a pressure pi,in and at a volumetric
flow rate of V̇i,in = viAi, where vi is the magnitude of the velocity of the fluid (speed)
and Ai is the cross-sectional area of the pipe. Pressure is force per unit area, and work is
force multiplied by displacement; thus, just at the system boundary as the fluid enters, the
pressure times the cross sectional area of the pipe is a force acting on the fluid, doing work
on the fluid as it crosses into the system (Figure 4).

 Rate of Flow Work
on system at entrance
for ith input stream


 = (force)

(
displacement

time

)

=

[(
force

area

)
(area)

](
displacement

time

)

= pi,inAivi (28)
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⋅
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⋅
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Figure 4: Work is force times displacement, and thus moving fluid is a source of work. Work
done by the fluid or on the fluid as it enters or leaves the system is called flow work. The
work on the boundaries of a flow system is done by fluid outside the boundary on the fluid
inside the system. If the system itself does work on its surroundings, such as at the exit
above, then the work on the system is negative.

= pi,inV̇i,in (29)

A stream exiting a chosen open system flows with a pressure pj,out and at a volumetric
flow rate of V̇j,out = vjAj , where vj is the speed of the fluid and Aj is the cross-sectional
area of the pipe. As before, just at the system boundary as the fluid exits, the pressure
times the cross sectional area of the pipe is a force acting on the fluid, but since this stream
is an exiting stream, the work is done on fluid that is outside of the chosen system. Thus,
the work done on the chosen system at the exit is the negative of the force times the fluid
displacement at the exit.


Rate of Flow Work
on system at exit

for jth stream


 = −




Rate of Flow Work
by system at exit

for jth stream


 (30)

= −pj,outAjvj (31)

= −pj,outV̇j (32)

We can now sum all the flow-work contributions and rearrange the open system energy
balance to include the separation of shaft work and flow work into the different expressions
derived above.

∆Ėp + ∆Ėk + ∆U̇ = Q̇in + Ẇon (33)
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= Q̇in + Ẇs,on +
∑
i,in

pi,inV̇i −
∑
j,out

pj,outV̇j (34)

∆Ėp + ∆Ėk +


∆U̇ +

∑
j,out

pj,outV̇j −
∑
i,in

pi,inV̇i


 = Q̇in + Ẇs,on (35)

The two flow-work terms are commonly combined with the internal energy term and
expressed in terms of the change in the thermodynamic function enthalpy, as we will now
show. Specific enthalpy or enthalpy per unit mass Ĥ is defined as

Ĥ ≡ Û + pV̂ Specific Enthalpy (36)

For each of the flow streams in our system we can calculate the amount of enthalpy brought
in or taken out, and, summing as we did for kinetic, potential, and internal energy, we can
calculate an overall change in enthalpy for our system.




Net Rate
of Enthalpy
flow out of

open system


 = ∆H =

∑
j,out

ṁjĤj −
∑
i,in

ṁiĤi (37)

=
∑
j,out

(
ṁjÛj + ṁjpj,outV̂j

)
−∑

i,in

(
ṁiÛi + ṁipi,inV̂i

)
(38)

The mpV̂ terms can be recognized as the flow-work terms that appeared in equation 35 (see
also equation 29).

ṁ V̂ = V̇ (39)(
mass

time

)(
volume

mass

)
=

(
volume

time

)
(40)


 Net Rate of

Enthalpy flow out
of an open system


 = ∆Ḣ (41)

=
∑
j,out

(
ṁjÛj + pj,outV̇j

)
−∑

i,in

(
ṁiÛi + pi,inV̇i

)
(42)

=


∑

j,out

ṁjÛj −
∑
i,in

ṁiÛi


+

∑
j,out

pj,outV̇j −
∑
i,in

pi,inV̇i (43)

= ∆U̇ +
∑
j,out

pj,outV̇j −
∑
i,in

pi,inV̇i (44)
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Equation 44 matches the bracketed terms in equation 35. Returning to equation 35 and
combining with equation 44 we obtain the conventional form of the macroscopic, open-
system energy balance.

∆Ėp + ∆Ėk + ∆Ḣ = Q̇in + Ẇs,on

Macroscopic
Open System

Energy Balance
(steady state)

(45)

For many heat-transfer systems, separation systems, and reactors, the kinetic and
potential energy changes are not important, and there is no shaft work (no mixers, no
turbines, no pumps) and the open-system energy balance reduces to

∆Ḣ = Q̇in

Open-System Energy Balance

when ∆Ėp, ∆Ėk, Ws,on ≈ 0
(steady state)

(46)

A way to think about enthalpy, therefore, is as the energy function that changes when heat
is added to an open system (mass flows in and out) under the fairly common conditions
listed above.

Note that for all the ∆−terms in the open-system balances, ∆ refers to out− in. Tech-
niques for applying the open-system energy balance are discussed in introductory chemical-
engineering textbooks (Felder and Rousseau).

0.1.3 Mechanical Energy Balance (MEB)

The simple form of the open-system macroscopic energy balance discussed above, ∆Ḣ = Q̇in

(equation 46), is quite common in heat exchangers and reactors, but in the flow of liquids
and gasses through conduits, the kinetic energy, potential energy, and shaft work dominate
the energy balance. This circumstance is so common, in fact, that a simplified version of
the open-system, macroscopic energy balance has been given its own name, the mechanical
energy balance, and a simplified form of the mechanical energy balance itself has its own
name, the Bernoulli equation. We will discuss these now.

We consider the special case of a single-input, single-output system such as a liquid
pushed through a piping system by a pump (Figure 5), and we apply the open-system energy
balance.

∆Ėk + ∆Ėp + ∆Ḣ = Q̇in + Ẇs,on (47)

For such a system there is only a single mass flow rate, ṁ, and thus all the summations
implicit in the ∆ terms of the open-system energy balance become simple differences. We
will label the outlet as position 2 and the inlet as position 1. We can further substitute
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pump

Figure 5: A system that presents itself quite often is one with a single input stream, a single
output stream, and in which an incompressible (1/V̂ = ρ = constant), non-reacting, nearly
isothermal (U̇ small) fluid is flowing.

Êk = Ėk/ṁ = v2/2 (equation 3) and Êp = Ėp/ṁ = gz (equation 4). Each term in the open
system energy balance simplifies as shown below.

∆Ėk ≡ ∑
out

ṁjÊk,j −
∑
in

ṁiÊk,i (48)

= ṁÊk,2 − ṁÊk,1 (49)

= ṁ
(
Êk,2 − Êk,1

)
(50)

= ṁ

(
v2

2

2
− v2

1

2

)
(51)

∆Ėp =
∑
out

ṁjÊp,j −
∑
in

ṁiÊp,i (52)

= ṁÊp,2 − ṁÊp,1 (53)

= ṁ
(
Êp,2 − Êp,1

)
(54)

= ṁg (z2 − z1) (55)

∆Ḣ =

(∑
out

ṁjÛj −
∑
in

ṁiÛi

)
+
∑
j,out

ṁjpj,outV̂j −
∑
i,in

ṁjpi,inV̂i (56)

= ṁÛ2 − ṁÛ1 + ṁp2V̂2 − ṁp1V̂1 (57)

= ṁ
(
Û2 − Û1 + p2V̂2 − p1V̂1

)
(58)
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= ṁ

(
Û2 − Û1 +

p2

ρ2

− p1

ρ1

)
(59)

In the last equation we have used the fact that V̂ = 1/ρ, where ρ is fluid density. For an
incompressible fluid ρ1 = ρ2 = ρ. We can now use ∆ to mean 2 minus 1 and substitute all
the results above back into the open-system energy balance and simplify.

∆Ėk + ∆Ėp + ∆Ḣ = Q̇in + Ẇs,on (60)

ṁ

(
v2

2

2
− v2

1

2

)
+ ṁg (z2 − z1) + ṁ

(
Û2 − Û1 +

p2

ρ
− p1

ρ

)
= Q̇in + Ẇs,on (61)

(
v2

2

2
− v2

1

2

)
+ g (z2 − z1) +

(
Û2 − Û1

)
+

(
p2

ρ
− p1

ρ

)
=

Q̇in

ṁ
+

Ẇs,on

ṁ
(62)

∆p

ρ
+

∆ (v2)

2
+ g∆z +

[
∆Û − Q̇in

ṁ

]
=

Ẇs,on

ṁ
(63)

The terms in square brackets are small for the flow of incompressible fluids in pipes since
temperature is approximately constant (also no phase or other chemical changes take place
and thus ∆Û ≈ 0) and only modest amounts of heat are transferred. We will group these
terms together and call them the friction term, F .

∆p

ρ
+

∆ (v2)

2α
+ g∆z + F =

Ẇs,on

ṁ

Mechanical Energy Balance
(single-input, single-output,

no phase change,
∆T ≈ 0, no reaction)

(64)

α ≈ 1 for turbulent flow (empirical result)

α = 0.5 for laminar flow (analytical result)

We have added the constant α to the denominator of the kinetic-energy term of the mechan-
ical energy balance to account for variations in the velocity at different radial positions in
the pipe. This effect can be deduced from the study of momentum balances (see Geanko-
plis). The constant α is approximately equal to one for turbulent flow and is exactly 0.5 for
laminar flow.

When the friction term and the shaft work are zero, the mechanical energy balance
simplifies still further to a form known as the Bernoulli equation.

∆p

ρ
+

∆ (v2)

2α
+ g∆z = 0

Bernoulli Equation
(single-input, single-output,

no phase change,
∆T ≈ 0, no reaction

no friction, no shaft work)

(65)

The Bernoulli equation is important in the study of hydrodynamics.
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The mechanical energy balance gives the relationship between pressure, velocity, el-
evation, frictional losses, and shaft work for the steady flow of incompressible fluids where
there is little heat transfer, no phase changes, no chemical changes, and very little change in
temperature. Application of the mechanical energy balance is limited to single-input, single-
output systems. Pressure, fluid velocity, and elevation are easily measured in experimental
systems, and shaft work is often the quantity to be calculated with the mechanical energy
balance. The friction term may sometimes be neglected; when the friction term cannot be
neglected, it must be calculated from experimental results, that is from data correlations
(see section 0.1.3.2).

Now we will learn to apply the mechanical energy balance.

0.1.3.1 MEB No Friction

We turn first to some examples that make use of the mechanical energy balance with the
friction term neglected. We will then turn to the problem of calculating the contribution
from fluid friction.

EXAMPLE What is the work required to pump 6.0 gallons/min of water in
the piping network shown in Figure 6? You may neglect the effect of friction.

SOLUTION When a flow problem involves the amount of shaft work re-
quired to bring about a flow, the mechanical energy balance is the first place to
start. The ∆-terms in the MEB refer to out− in. We will choose location 2 to be
where the fluid exits the pipe, and location 1 will be the liquid free surface in the
tank. For both of these locations we know the pressure, the velocity of the fluid
(the velocity of fluid at the surface of the tank is nearly zero), and the elevation.
This is all the information we need to calculate Ẇs,on from the mechanical energy
balance.

∆p

ρ
+

∆ (v2)

2α
+ g∆z + F =

Ẇs,on

ṁ

p2 − p1

ρ
+

v2
2 − v2

1

2α
+ g(z2 − z1) + F =

Ẇs,on

ṁ

At position 1, p1 = 1 atm, z1 = 0 (position 1 is chosen to be the reference
elevation), and v1 ≈ 0. At position 2, p2 = 1 atm, z2 = 75ft, and the velocity
v2 may be calculated from the volumetric flow rate and the cross sectional area
of the pipe. The frictional term F is equal to zero, as given in the problem
statement.

V̇ =

(
6.0gal

min

)(
1ft3

7.4805gal

)(
min

60s

)
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Figure 6: A common problem in engineering involves pumping a fluid from a tank at at-
mospheric pressure through a piping system. The amount of work required to pump at a
chosen flow rate may be calculated with the mechanical energy balance.

= 0.013368ft3/s = 1.3 × 10−2ft3/s

ṁ =
0.013368ft3

s

(
62.43lbm

ft3

)

= 0.83456lbm/s = 8.3 × 10−1lbm/s

v2 =
0.013368ft3

s

(
1

π(1.0in)2

)
(12in)2

(1ft)2

= 0.612748ft/s = 6.1 × 10−1ft/s

The average velocity of the 3-inch inner diameter pipe may be calculated from a



16 c© 2005 Faith A. Morrison, all rights reserved.

mass balance.(
mass flow
2-in pipe

)
=

(
mass flow
3-in pipe

)

ρv2
π (2in)2

4
= ρv1

π (3in)2

4

v1 = 0.272333ft/s = 2.7 × 10−1ft/s

To choose α we need to calculate the Reynolds number, which tells us whether
the flow is laminar (Re < 2100) or turbulent (Re > 4000).

Re2in pipe =
ρvD

µ

∣∣∣∣∣
2in pipe

=

62.43lbm

ft3
0.612748ft

s
2in

12in/ft

0.8937cp6.7197×10−4lbm

ft·s·cp
= 10, 617 = 1.1 × 104

Re3in pipe =
ρvD

µ

∣∣∣∣∣
3in pipe

=

62.43lbm

ft3
0.272333ft

s
3in

12in/ft

0.8937cp6.7197×10−4lbm

ft·s·cp
= 7078 = 7.1 × 103

From the values of Re we can conclude that the flow in both pipe sections is
turbulent, and therefore α = 1 for our calculations. Now we can assemble the
mechanical energy balance and calculate the shaft work.

[
1 − 1

ρ
+

(0.612748ft/s)2 − 02

2(1)
+

32.174ft

s2
(75ft − 0ft) + 0

]
s2 · lbf

32.174ft · lbm
=

Ẇs,on

0.83456lbm/s

Ẇs,on = (5.83484 × 10−3 + 75)(0.83456)

= 62.59687ft · lbf/s

(
1.341 × 10−3hp

0.7376ft · lbf/s

)

= 0.1138046hp = 1.1 × 10−1hp

Note that the kinetic-energy contribution (5.8× 10−3) is very small compared to
the potential energy contribution (75). Note also that significant figures should
be considered when reporting values for Ẇs,on, V̇ , ṁ, and v2 (e.g. v2 = 6.1 ×
10−1ft/s), but when the numbers are needed in carrying forward the calculation,
the complete number (all digits) should be used in order to minimize round-off
error (e.g. v2 = 0.612748ft/s).
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EXAMPLE What is the relationship between measured pressure drop and
flow rate through a Venturi meter?

SOLUTION A Venturi meter is a device that allows for the measurement
of flow rate in incompressible liquid flow in pipes (Figure 7). The design of a

1 2

measure P1 measure P2

)2(v

Figure 7: Venturi meters take up a great deal of space, but they do allow for an accurate
measurement of flow rate without greatly disturbing the flow. Flow is directed through a
gently tapering tube. Pressure is measured before the contraction (1) and at the point of
smallest diameter (the throat, 2). The relationship between the measured pressures and
the fluid velocity may be deduced from the mechanical energy balance (for systems where
friction may be neglected) or from the mechanical energy balance and a calibration specific
to the device (if friction effects are to be taken into account).

Venturi meter is of a converging section of pipe followed by a diverging section;
the changes in cross-section are gradual in order to minimize the frictional losses
within the device. We begin our analysis with the mechanical energy balance,
and we will neglect the frictional contribution at first.

∆p

ρ
+

∆ (v2)

2α
+ g∆z + F =

Ẇs,on

ṁ
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Point 1 will be chosen as the point of the upstream pressure measurement, and
point 2 will be at the throat, the location of the other pressure measurement.
There are no moving parts, and therefore Ẇs,on = 0. As stated above, we will
neglect friction and thus F = 0. Venturi meters are installed horizontally, and
thus z1 − z2 = 0. The mechanical energy balance simplifies in this case to

p2 − p1

ρ
+

v2
2 − v2

1

2α
= 0

We can relate v1 and v2 through the mass balance between point 1 and point 2.
We are considering the steady flow of an incompressible liquid where the density
is constant ρ1 = ρ2 = ρ.

(
Mass flow at

point 1

)
=

(
Mass flow at

point 2

)
(

mass

volume

)
1

(
volume

time

)
1

=
(

mass

volume

)
2

(
volume

time

)
2

ρv1π
D2

1

4
= ρv2π

D2
2

4
v1D

2
1 = v2D

2
2

v1 =
(

D2

D1

)2

v2

Substituting this result back into the simplified mechanical energy balance, we
obtain the final relationship between the flow rate (V̇ = v2πD2

2/4) and the mea-
sured pressure drop (p1 − p2).

p2 − p1

ρ
+

v2
2 − v2

1

2α
= 0

p2 − p1

ρ
+

1

2α

[
v2

2 −
(

D2

D1

)4

v2
2

]
= 0

v2 =

√√√√√√
2α(p1−p2)

ρ[
1 −

(
D2

D1

)4
]

V̇ = v2πD2
2/4

V̇ =
πD2

2

4

√√√√√√
2α(p1−p2)

ρ[
1 −

(
D2

D1

)4
]

Flow Rate
measured by a
Venturi Meter
(no friction)

(66)
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For many Venturi meters when the flow is sufficiently rapid (Re > 104) (Geanko-
plis) this no-friction relationship describes the pressure-drop/flow-rate relation-
ship well. For slower flows, friction is more important to the total energy, and
calibration should be performed to determine an empirical friction correction
factor Cv:

V̇ = Cv

(
πD2

2

4

)√√√√√√
2α(p1−p2)

ρ[
1 −

(
D2

D1

)4
]

Flow Rate
measured by a
Venturi Meter
(with friction)

(67)

0.1.3.2 MEB With Friction

Sometimes the friction term makes an important contribution to the mechanical energy
balance. This is true when there are changes in pipe diameter, twists and turns in the pipe,
flow obstructions such as an orifice plate, or when there are very long runs of piping.

∆p

ρ
+

∆ (v2)

2α
+ g∆z + F =

Ẇs,on

ṁ
(68)

When friction is important, F must be determined experimentally, much as Cv for Venturi
meters is determined experimentally as discussed in the last example. The mechanical energy
balance would not be very useful, however, if we had to first build every apparatus of interest
to us and do experiments on them in order to know the relationships between pressure,
velocity, elevation, friction, and work. We had sought to use the mechanical energy balance
to predict the relationships between these variables for systems that are not yet built. We
may wish to calculate shaft work of a pump, for example, in a hypothetical flow loop, or
we may wish to predict flow rate achieved when a pump of a certain horsepower works on a
given flow loop.

The solution to this dilemma is to draw on the experiments of prior researchers in
order to estimate the friction for the systems that interest us. If someone has built a flow
system just like the one we would like to build, then we can use data on the performance of
that other system to understand our system.

What if we have data on a flow system that is somewhat similar to the system that
interests us but is not exactly the same? Can we use that data? The answer to this is,
maybe.

The resolution to the dilemma of how to compare similar, but not identical systems, is
found through dimensional analysis. Dimensional analysis is based on the correct observation
that the laws of physics (mass conservation, energy conservation, momentum conservation)
apply to all systems, simple and complex. For simple systems we can apply the techniques of
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engineering analysis to calculate whatever quantities interest us. For complex systems this
is not always possible, but we do know that the laws of physics apply. From dimensional
analysis on the laws of physics, we can deduce how quantities that interest us (such as wall
friction in the current case or heat-transfer coefficient in an energy-balance case) vary with
certain quantities identified with a given system. We (or others) can then do targeted exper-
iments and publish data correlations that can be used by engineers to calculate quantities
of interest on similar systems.

The details of the dimensional analysis process may be found elsewhere (Geankoplis).
For mechanical energy balance problems the useful results from dimensional analysis are
data correlations for frictional losses in straight pipes, valves, fittings, and other devices.
For liquid flows in straight pipes, the frictional losses are correlated in terms of the Fanning
friction factor f as a function of the Reynolds number, Re. The Fanning friction factor is
defined as a dimensionless wall force in straight tubes, and its relationship to pressure drops,
flow rates, and geometric factors may be understood by considering the mechanical energy
balance applied to a straight section of pipe.

EXAMPLE For a Newtonian fluid, what is the friction term F in the me-
chanical energy balance for steady flow in a tube?

p1 p2

system

 fluid

Fz
2v

 =force on wall
   = -force on fluid

1v

21

Figure 8: A mechanical energy balance on a straight pipe section yields the expression for
the frictional losses in a straight pipe.
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SOLUTION We begin with the mechanical energy balance.

∆p

ρ
+

∆ (v2)

2α
+ g∆z + F =

Ẇs,on

ṁ

We choose as our two points a point upstream where the pressure p1 is known
and a point downstream where the pressure p2 is known. There is no pump or
moving parts in our chosen system, which means Ẇs,on = 0. The pipe will have a
constant flow rate and a constant cross-sectional area; therefore v2

2 −v2
1 = 0. The

pipe will be chosen to be horizontal, and therefore z2 − z1 = 0. The mechanical
energy balance becomes

p2 − p1

ρ
+ F = 0

The frictional term is therefore found to be

FStraight Pipe =
p1 − p2

ρ

Friction
in Steady Flow

in Pipes
(69)

Thus, data can be taken of pressure drop for a variety of flow rates and tube
geometries (length, diameter) and for a variety of fluids (with different densities
ρ and viscosities µ), and the data could be tabulated and published.

Dimensional analysis can make the collection and reporting of all this
pressure-drop-flow-rate data more rational and accessible. From dimensional
analysis (see Geankoplis) we find that a useful defined quantity is the Fanning
friction factor, f , a dimensionless wall force, which may be used to correlate fric-
tion in pipe flows with Reynolds number, a dimensionless flow rate. The Fanning
friction factor f is defined as

f ≡ Wall Force

(Area) (Kinetic Energy)

=
(p1 − p2)πR2

(2πRL)
[

1
2
ρ (vav)

2
]

The relation wall force = (p1 − p2)πR2 was obtained from a momentum balance
on the straight pipe system (Geankoplis). Simplifying we obtain,

f =
(p1 − p2)D

2Lρ (vav)
2

Fanning Friction
Factor

(70)

Dimensional analysis tells us that for steady flow of a Newtonian fluid in a
tube, the Fanning friction factor is only a function of the dimensionless quantity
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ρvavD/µ, which is called the Reynolds number.

f = f(Re); Re ≡ ρvavD

µ

Dimensional Analysis
Result for Pipe Flow

(71)

We can therefore calculate the friction term F in the mechanical energy balance
for the flow of any fluid in any tube by consulting the data correlations f(Re)
that are in the literature and using equations 69 and 70.

FStraight Pipe =
p1 − p2

ρ
=

2fL (vav)
2

D

Friction
in Steady Flow

in Pipes
(72)

For any flow in a tube, we must calculate the Reynolds number (we need ρ, vav,
D, and µ) from which we can get f (from the data correlation in the literature).
This in turn can be combined with the other quantities in equation 72 to give us
the friction term F from the mechanical energy balance.

The data correlations for f are well established. For laminar flow we can use
direct computation to determine f as a function of Reynolds number as we will
see below. For turbulent flow the correlations come from careful experiments (see
equation 76).

EXAMPLE What is the relationship between the Fanning friction factor f
and the Reynolds number Re for steady, laminar flow in a tube?

SOLUTION As with general flows, the correlation between f and Re for
laminar flow in a tube could be determined experimentally. Since laminar flow is
a simple flow, however, we can use the techniques of the microscopic momentum
balance to derive a relationship between pressure drop and flow rate for this spe-
cial case. The result for Newtonian fluids is called the Hagen-Poiseuille equation
(see Geankoplis).

p1 − p2 =
128QµL

πD4
=

32µLvav

D2

Hagen-Poiseuille equation
(Laminar flow in a tube)

(73)

where Q = vavπD2/4 is the flow rate in the tube, vav is the average fluid velocity,
µ is the viscosity of the fluid, L is the length of pipe between points 1 and 2, and
D is the diameter of the tube.
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Because we have the Hagen-Poiseuille equation, the Fanning friction factor f
for the special case of laminar flow in a tube can be calculated directly, and no
experiments are needed (except to verify the modeling assumptions).

f = (p1 − p2)
D

2Lρ (vav)
2

=
[
32µLvav

D2

]
D

2L (vav)
2 ρ

=
16µ

ρvavD
=

16

Re

fLaminar Flow =
16

Re

Fanning friction Factor
in Steady Laminar Flow

in Pipes
(74)

The previous two examples show how to calculate the contribution of friction in straight
pipes to the friction term F in the mechanical energy balance; for both laminar and turbulent
flow F is given by

FStraight Pipe =
p1 − p2

ρ
=

2fL (vav)
2

D

Friction
in Steady Flow

in Pipes
(75)

For laminar flow f = 16/Re and for turbulent flow correlations from the literature supply
f . A useful empirical equation for turbulent flow is the Colebrook formula (Denn), which
gives f as a function of Reynolds number and k/D, a surface roughness parameter relevant
for commercial pipe.

1√
f

= −4.0 log

(
k

D
+

4.67

Re
√

f

)
+ 2.28 Colebrook Formula (76)

Values of k for various materials are given in Table 1, and the correlation is plotted in
Figure 9. Experiments show that laminar flow takes place in straight pipes with a circular
crosssection for Re < 2100, and fully turbulent flow occurs for Re > 4000. In between
2100 and 4000 the flow is called transitional flow, which is neither stable laminar nor fully
turbulent flow.
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material k (mm)

Drawn tubing (brass, lead, glass, etc.) 1.5 × 10−3

Commercial steel or wrought iron 0.05
Asphalted cast iron 0.12
Galvanized iron 0.15
Cast iron 0.46
Wood stave 0.2 − 0.9
Concrete 0.3 − 3
Riveted steel 0.9 − 9

Table 1: Surface roughness for various materials; from Denn.

0.001

0.01

0.1

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

f 0.05

0.02

0.01

0.005

0.002

0.001

0.0005

0.0002

0.0001

0.00005

0.00002

0.00001

0.000005

0.000002

0.000001

k/D

103 104 105 106 107 108

Re

Figure 9: Fanning friction factor versus Reynolds number from the Colebrook formula,
equation 76. For Re < 2100, f = 16/Re.
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In addition to wall drag in straight pipes, there are many other sources of friction
in piping systems: valves, fittings, pumps, expansions, and contractions are all sources of
friction. To quantify the friction in these devices we use the same procedure as we used to
deduce the result used for straight pipes: we apply the mechanical energy balance to the
valve, fitting, or other friction-generating segment of the piping system, then we simplify the
resulting equation by using mass and momentum balances as appropriate, and finally we use
dimensional analysis to guide experiments to find the appropriate correlations. For valves,
fittings, expansions and contractions the data correlations that result from such analyses
may be written in the following form:

Fi = Ki
(vav)

2

2

Friction from
Fittings

(77)

The friction coefficients Ki are different for every type of valve, fitting, etc. and some values
of Ki may be found in Tables 2 and 3. The friction F for a complete piping system will
be equal to the friction due to the straight pipes plus the friction due to each of the valves,
fittings, expansions, and contractions that are present in the flow loop.

FFlow Loop =
∑

j,straight pipe segments

4fj
Lj

Dj

v2
j

2
+

∑
i,fittings

Ki
v2

i

2

Friction
in a

Flow Loop
(78)

In these correlations note that there is no α in the denominator of the velocity-squared
expressions; instead there are different values of Ki depending on whether the flow is laminar
or turbulent. The vi to be used in expansions and contractions is the faster average velocity
(the upstream velocity for an expansion and the downstream velocity for a contraction). The
vj to be used in the summation over the straight-pipe segments is the average velocity in the
straight pipe, which will be different for different values of Di, the diameter of the pipe.

The values of Ki for expansions and contractions are given Tables 2 and 3; note these
are slightly different from those given in Geankoplis in that equations 79 and 80 include the
α in the equations for the Ki.

Kexp =
1

α

(
1 − A1

A2

)2

(79)

Kcont =
0.55

α

(
1 − A2

A1

)
(80)

where A1 is the upstream cross-sectional area and A2 is the downstream cross-sectional area.
The values for Ki for other fittings are also given in Table 2.

With the development of equation 78 for the friction term in the mechanical energy
balance, we are now ready to do a mechanical energy balance calculation with friction.
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fitting, i

Friction-Loss

Factor,

Ki

Elbow, 45o 0.35

Elbow, 90o 0.75

Tee 1

Return bend 1.5

Coupling 0.04

Union 0.04

Gate valve, wide open 0.17

Gate valve, half open 0.45

Globe valve, wide open 6.0

Globe valve, half open 9.5

Check valve, ball 70.0

Check valve, swing 2.0

Water meter, disk 7.0

Expansion from A1 to A2
1
α

(
1 − A1

A2

)2

Contraction from A1 to A2
0.55
α

(
1 − A2

A1

)

Table 2: Friction-loss factors for turbulent flow (α = 1) through valves, fittings, expansions
and contractions (Geankoplis). The expressions for expansions and contractions may also
be used for laminar flow, for which α = 0.5.
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fitting, i Rei =50 100 200 400 1000 Turbulent

Elbow, 90o 17 7 2.5 1.2 0.85 0.75

Tee 9 4.8 3.0 2.0 1.4 1.0

Globe valve 28 22 17 14 10 6.0

Check valve, swing 55 17 9 5.8 3.2 2.0

Table 3: Friction-loss factors Ki for laminar flow through valves, fittings, expansions and
contractions (Geankoplis).
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EXAMPLE What is the work required to pump 6.0 gallons/min of water in
the piping network shown in Figure 6? You must take into account the effect of
friction. The piping may be considered to be smooth pipe.

SOLUTION The solution is the same as it was in the previous case except
that we must calculate the frictional contribution F .

F =
∑

j,straight pipe segments

4fj
Lj

Dj

v2
j

2
+

∑
i,fittings

Ki
v2

i

2

We have two types of straight-pipe segments, one type that is 50 ft long with
inner diameter of 3 inches, and one type that is a total of 40 + 8 + 75 + 20 = 143
ft long with inner diameter of 2 inches. The average velocities in the pipes were
calculated in the previous example to be

v2in pipe = 0.612748ft/s

v3in pipe = 0.272333ft/s

The Fanning friction factor f for each of the two types of straight-pipe seg-
ments may be different. Fanning friction factor is a function of Reynolds number
and may be obtained from the appropriate correlations (i.e. f = 16/Re for lami-
nar flow and the Colebrook formula for turbulent flow). We previously calculated
the Reynolds numbers for the two pipe sizes.

Re2in pipe =
ρvD

µ

∣∣∣∣∣
2in pipe

= 10, 617 = 1.1 × 104

Re3in pipe =
ρvD

µ

∣∣∣∣∣
3in pipe

= 7078 = 7.1 × 103

The flow is everywhere turbulent (Re > 4000). The Fanning friction factors are
then found from the Colebrook formula to be f = 0.007603 for the 2-inch pipe
and f = 0.00848 for the 3-inch pipe.

The fittings for our flow loop are two 90o elbows, and two contractions, one
from the tank to the inlet of the 3-in pipe and one just upstream of the pump. For
the contraction from the tank to the 3-in pipe the velocity to use is the velocity
in the 3-in pipe (the larger velocity). For the contraction to 2-in and for the two
elbows, the velocity to use is the velocity in the 2-in pipe. For the fittings in our
system, the friction-loss factors Ki obtained from Table 2 are listed below.

fitting Ki

Contraction (tank to 3-in pipe, A1/A2 = ∞) 0.55
Contraction (3-in to 2-in), A2/A1 = 4/9 0.305556

90o elbow 0.75
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We can now calculate the friction contribution to the mechanical energy bal-
ance for this system.

F =
∑

j,straight pipe segments

4fj
Lj

Dj

v2
j

2
+

∑
i,fittings

Ki
v2

i

2

= (4) (0.00848)

(
50ft

3in

12in

ft

)
(0.272333)2

2

+ (4) (0.007603)

(
143ft

2in

12in

ft

)
(0.612748ft/s)2

2

+0.55
(0.272333)2

2

+ (0.305556 + (2)0.75)
(0.612748ft/s)2

2

= 5.50946
ft2

s2

We can now combine this with equation 66 from the previous example to arrive
at the final value for the shaft work.

Ẇs,on

0.83456lbm/s
=

[
1 − 1

ρ
+

(0.612748ft/s)2 − 02

2
+

32.174ft

s2
(75ft − 0ft)

+5.50946
ft2

s2

]
s2 · lbf

32.174ft · lbm

Ẇs,on = 62.73978ft · lbf/s

(
1.341 × 10−3hp

0.7376ft · lbf/s

)
= 0.1140646

Ẇs,on = 1.1 hp

Note that the result calculated in the last example was the same, within two significant
figures, as the calculation without friction. If we examine the contributions to the shaft work,
we see that in this flowloop, the 75 ft elevation rise (potential energy) dominates the kinetic
energy change and the frictional losses. If we convert the kinetic energy and frictional
contributions into equivalent feet of elevation change, we can begin to build an intuition
about how these various types of energy contribute to the load on the pump. We can do
this by factoring out the acceleration due to gravity in the MEB calculations done in the
last example, as we show below.

Ẇs,on

0.83456lbm/s
=

[
1 − 1

ρ
+

(0.612748ft/s)2 − 02

2
+

32.174ft

s2
(75ft− 0ft)
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+5.50946
ft2

s2

]
s2 · lbf

32.174ft · lbm

=

[
(0.612748ft/s)2

(2)(32.174ft/s2)
+ 75ft +

(5.50946ft2/s2)

(32.174ft/s2)

]
32.174ft

s2

s2 · lbf

32.174ft · lbm

Ẇs,on =

[
(0.612748)2

(2)(32.174)
ft + 75ft +

5.50946

32.174
ft

]
0.83456

lbf

s

Ẇs,on =
[
5.8348 × 10−3ft + 75ft + 0.171240ft

]
0.83456

lbf

s

When we write the kinetic energy, potential energy, and friction terms all in the same
units (ft of elevation or ft of head, as it is called) we can easily compare the magnitudes of
the terms and, conveniently, compare them in units in which we have some intuition, that is,
the energy stored in raising the fluid by one foot of elevation. Looking at the contributions
in terms of fluid head, we see that the kinetic energy makes the smallest contribution at
5.8×10−3ft, but the friction head, 0.17ft, while much larger than the velocity contribution,
is nearly as negligible compared to the substantial elevation head of 75ft. Engineers have
often found the concept of head to be quite useful in calculations of this sort.
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