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explicitly in terms of the basis vectors ê1, ê2, ê3, and we use the expressions in
equations 1.270-1.272 to algebraically convert the basis vectors.

A = 2ê1ê1 (1.317)

To write ê1 in terms of êr, êθ, and êz we solve equations 1.270 -1.271 for ê1
explicitly.

êr = cos θê1 + sin θê2 (1.318)

êθ = − sin θê1 + cos θê2 (1.319)

Solving for ê1,

ê1 = cos θêr − sin θêθ (1.320)

Substituting this result into equation 1.317 twice and carrying out the distributive
law we obtain,

A = 2ê1ê1 (1.321)

= (cos θêr − sin θêθ) (cos θêr − sin θêθ) (1.322)

= cos2 θêrêr − sin θ cos θêr êθ − sin θ cos θêθêr + sin2 θêθ êθ (1.323)

A =

⎛
⎝ cos2 θ − sin θ cos θ 0
− sin θ cos θ sin2 θ 0

0 0 0

⎞
⎠

rθz

(1.324)

The same tensor A is expressed in equations 1.316 and 1.324 – they are just
expressed with respect to different coordinate systems.

1.3.3 Substantial Derivative

The mass, momentum, and conservation equations introduced in section 1.3.2 are written in
equations 1.244-1.246 in a way that emphasizes the similarity of the left-hand terms. Notice
that on the left side of those equations, the following pattern recurs:

∂f

∂t
+ v · ∇f (1.325)

where, depending on which equation we look at, f is density, velocity, or energy. This
pattern is given a name, the substantial derivative. The notation for substantial derivative
is a derivative written with a capital D.

Substantial
derivative

(Gibbs notation)

Df

Dt
≡

∂f

∂t
+ v · ∇f (1.326)

Cartesian coordinates
(see Table B.2)

Df

Dt
≡

∂f

∂t
+

∂f

∂x1

v1 +
∂f

∂x2

v2 +
∂f

∂x3

v3 (1.327)
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The substantial derivative has a physical meaning: the rate of change of a quantity (mass,
energy, momentum) as experienced by an observer that is moving along with the flow. The
observations made by a moving observer are affected by the stationary time-rate-of-change
of the property (∂f/∂t), but what is observed also depends on where the observer goes as
it floats along with the flow (v · ∇f). If the flow takes the observer into a region where, for
example, the local energy is higher, then the observed amount of energy will be higher due
to this change in location. The rate of change from the point of view of an observer floating
along with a flow appears naturally in the equations of change.

The physical meaning of the substantial derivative is discussed more completely in
the sidebar below and in a National Committee of Fluid Mechanics film available on the
internet[136]. The chapter concludes with some practical mathematical advice in sec-
tion 1.3.4. In Chapter 2 we turn to a tour through fluid behavior as a first step to fluid
modeling.

SIDEBAR Substantial Derivative in Fluid Mechanics

In fluid mechanics and in other branches of physics, we often deal with prop-
erties that vary in space and that also change with time. Thus, we need to
consider the differentials of multivariable functions. Consider such a multivari-
able function, f(t, x1, x2, x3), associated with a particle of fluid, where t is time,
and x1, x2, and x3 are the three spatial coordinates. The function f might be,
for example, the density of flowing material as a function of time and position.
The expression Δf is the change in f when comparing the value of the function
f at two nearby points, (t, x1, x2, x3) and (t+Δt, x1 +Δx1, x2 +Δx2, x3 +Δx3).

f = f(t, x1, x2, x3) (1.328)

Δf = f(t+Δt, x1 +Δx1, x2 +Δx2, x3 +Δx3)− f(t, x1, x2, x3) (1.329)

In the limit that the two points are close together, Δf becomes the differential
df :

df = lim
Δx1 −→ 0
Δx2 −→ 0
Δx3 −→ 0
Δt −→ 0

Δf (1.330)

We can write Δf in terms of partial derivatives, functions that give the rates
of change of f (slopes) in the three coordinate directions x1, x2, x3 (see web
appendix [124] for a review).

Δf =
∂f

∂t
Δt +

∂f

∂x1
Δx1 +

∂f

∂x2
Δx2 +

∂f

∂x3
Δx3 (1.331)
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Since the differential df is the limit of Δf as all changes of variable go to zero,
we can take the limit of equation 1.331 to obtain df in terms of dx1, dx2, and
dx3.

df = lim
Δx1 −→ 0
Δx2 −→ 0
Δx3 −→ 0
Δt −→ 0

Δf (1.332)

df = lim
Δx1 −→ 0
Δx2 −→ 0
Δx3 −→ 0
Δt −→ 0

∂f

∂t
Δt+

∂f

∂x1
Δx1 +

∂f

∂x2
Δx2 +

∂f

∂x3
Δx3 (1.333)

df =
∂f

∂t
dt+

∂f

∂x1

dx1 +
∂f

∂x2

dx2 +
∂f

∂x3

dx3 (1.334)

This is the familiar chain rule. The direction in going from (t, x1, x2, x3) to
(t+Δt, x1 +Δx1, x2 +Δx2, x3 +Δx3, t+Δt) is not specified in the definition of
df ; equation 1.334 applies to any path between any two nearby points.

There is, however, a particular path and set of neighboring particles that is
of recurring interest in fluid mechanics, and that is the path that fluid particles
take. Fluid particles are discussed in detail in Chapter 3, but briefly, a fluid
particle is an infinitesimally small piece of fluid. If we choose one such piece of
fluid, its motion describes a path through three-dimensional space (Figure 1.46).
These paths are called pathlines of the flow.

fluid 
particle 

particle 
pathline 

Figure 1.46: A fluid particle consists of the same molecules at all times. The path that a
particle follows through a flow is called a pathline.

Consider variation in the function f along a particular path, the path that
a fluid particle traces out as it travels through a flow. The function f might
be density as a function of position and time, or temperature as a function of
position and time, for example. Beginning at an arbitrary point in the flow, we
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compare the value of f at the original point and the value of f at the nearby point
f+Δf . For an arbitrary path as we just discussed, Δf is given by equation 1.333.

Δf |along ANY path =
∂f

∂t
Δt+

∂f

∂x1
Δx1 +

∂f

∂x2
Δx2 +

∂f

∂x3
Δx3 (1.335)

If we now choose to follow fluid particles along a particular path, the particle
pathline, then we can relate the directions Δx1,Δx2,Δx3 to the local fluid ve-
locity components, v1, v2, and v3.

Along a
pathline:

⎧⎨
⎩

Δx1 = v1Δt
Δx2 = v2Δt
Δx3 = v3Δt

(1.336)

Substituting these expressions into equation 1.335, we obtain

Δf |along particle pathline =
∂f

∂t
Δt +

∂f

∂x1
v1Δt +

∂f

∂x1
v2Δt +

∂f

∂x1
v3Δt (1.337)

= Δt

(
∂f

∂t
+

∂f

∂x1
v1 +

∂f

∂x1
v2 +

∂f

∂x1
v3

)
(1.338)

Dividing through by Δt and taking the limit as Δt goes to zero, we arrive at the
expression below, which has been named the substantial derivative.

Δf

Δt

∣∣∣∣
along particle pathline

=
∂f

∂t
+

∂f

∂x1

v1 +
∂f

∂x1

v2 +
∂f

∂x1

v3 (1.339)

Df

Dt
≡

df

dt

∣∣∣∣
along particle pathline

= lim
Δt−→0

Δf

Δt

∣∣∣∣
along particle pathline

(1.340)

Substantial derivative or
rate-of-change of f
along a pathline

Df

Dt
=

∂f

∂t
+

∂f

∂x1
v1 +

∂f

∂x2
v2 +

∂f

∂x3
v3 (1.341)

Thus, the substantial derivative gives the time rate of change of a function f as
the observer floats along a pathline in a flow, attached to a fluid particle.

Why does the “time rate of change of a function as the observer floats along in
the flow” matter in fluid mechanics? One reason is that sometimes measurements
are made in just such a way, by floating an instrument in a flow as is done in, for
example, a weather balloon (Figure 1.47). The density, velocity, or temperature
as a function of time recorded this way would be the substantial derivative along
the pathline traveled. In meteorology and oceanography it is common to make
measurements of the substantial derivative.

The main reason, however, that the substantial derivative is important is
because it appears in the mass, momentum, and energy conservation equations.
Returning to the equations of change for mass, momentum, and energy given in
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Figure 1.47: Weather balloons float along at the average velocity of the fluid and measure ve-
locity, temperature, and other variables of interest to weather forcasters. This is an example
of a measurement of properties along a pathline.

equations 1.244-1.246 (discussed more fully in Chapter 6 and reference [17, 120]),
we see that the substantial derivatives of the density, velocity, and energy appear.

Mass conservation
Dρ

Dt
= −ρ (∇ · v) (1.342)

Momentum conservation ρ
Dv

Dt
= −∇p + μ∇2v + ρg (1.343)

Energy conservation ρ
DÊ

Dt
= −∇ · q −∇ · (pv) +∇ · τ̃ · v + Se (1.344)

The substantial derivative appears because each of these equations is written in
terms of the properties of a field (written in terms of the field variables ρ, v,
Ê) and not in terms of the properties of a single, isolated body (Figure 1.48).
The mass of a body is conserved in the sense that if the mass changes, if a
piece is shaved off, for example, it is not the same body. The momentum of a
body is conserved (Newton’s second law, Chapter 3), and the energy of a body is
conserved (first law of thermodynamics, Chapter 6). For a body, the conservation
laws contain the usual rates of change of mass (dm/dt), momentum (d(mv)/dt),
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Figure 1.48: The balance equations for mass, momentum, and for energy may be written for
a body or for a position in space, that is for a field.

and energy (dE/dt). When one is concerned with the properties characteristic
of a location in a field rather than of a chosen body, the correct expression for
the rate of change of the field variable at a fixed point can be shown to be
the substantial derivative (Chapters 3, 6). The rate of change of a property –
mass, momentum, energy – for a given position in a field depends both on the
instantaneous rate of change of the property at that location (∂/∂t) as well as on
the rate at which the property is convected to that location by the fluid motion
(v · ∇). In Chapter 6 we derive the mass, momentum, and energy balances for a
position in a field, and the substantial derivative appears naturally. The concepts
outlined here are discussed fully in Chapter 3 and 6. We present two examples
below to build familiarity with the substantial derivative.

EXAMPLE 1.29 Using equation 1.247 to write ∇f , use matrix
multiplication to verify the equality of the two expressions below for the
substantial derivative.

Substantial
derivative

(Gibbs notation)

Df

Dt
≡

∂f

∂t
+ v · ∇f (1.345)

Cartesian coordinates
(see Table B.2)

Df

Dt
≡

∂f

∂t
+

∂f

∂x1

v1 +
∂f

∂x2

v2 +
∂f

∂x3

v3(1.346)
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SOLUTION To show the equality of these two equation, we write
the Gibbs notation expressions v and ∇f in Cartesian coordinates and
matrix multiply.

v =

⎛
⎜⎜⎜⎝

v1

v2

v3

⎞
⎟⎟⎟⎠

123

(1.347)

∇f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂f

∂x1

∂f

∂x2

∂f

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.348)

v · ∇f =
(

v1 v2 v3

)
123
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂f

∂x1

∂f

∂x2

∂f

∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123

(1.349)

= v1
∂f

∂x1
+ v2

∂f

∂x2
+ v3

∂f

∂x3
(1.350)

Thus,

Df

Dt
≡

∂f

∂t
+ v · ∇f =

∂f

∂t
+

∂f

∂x1

v1 +
∂f

∂x2

v2 +
∂f

∂x3

v3 (1.351)

EXAMPLE 1.30 What is the substantial derivative Dv/Dt of the
steady state velocity field represented by the velocity vector below? Note
that the answer is a vector.

v(x, y, z, t) =

⎛
⎝ −3.0x
−3.0y
6z

⎞
⎠

xyz

(1.352)

SOLUTION We begin with the definition of the substantial
derivative in equation 1.326 and substitute v for f .

Dv

Dt
=

∂v

∂t
+ v · ∇v (1.353)
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Now we consult Table B.2 to determine the components of v · ∇v in
Cartesian coordinates, and we construct the Cartesian expression for
Dv/Dt.

v · ∇v =

⎛
⎜⎝

vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

⎞
⎟⎠

xyz

(1.354)

Dv

Dt
=

∂v

∂t
+ v · ∇v (1.355)

=

⎛
⎝

∂vx
∂t
∂vy
∂t
∂vz
∂t

⎞
⎠

xyz

+

⎛
⎜⎝

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

∂vx
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

∂vx
∂t

+ vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

⎞
⎟⎠

xyz

(1.356)

Finally, we carry out the partial derivatives on the various terms of the
velocity field an substitute these into equation 1.356.

Dv

Dt
=

⎛
⎝ 0 + (−3)(−3x) + 0 + 0

0 + 0 + (−3)(−3y) + 0
0 + 0 + 0 + 6(6z)

⎞
⎠

xyz

(1.357)

=

⎛
⎝ 9x

9y
36z

⎞
⎠

xyz

(1.358)

1.3.4 Practical Advice

The analysis of flows often means solving for density, velocity, and stress fields. The equations
that we encounter in these analyses are ordinary differential equations (ODEs) and partial
differential equations (PDEs). The solutions of differential equations give the complete
density field, velocity field, and stress field for the problem, from which many engineering
quantities can be calculated. In this text it is assumed that students have taken multivariable
calculus, linear algebra, and a first course in solving differential equations; we shall be
applying these skills and other mathematics skills in studying fluid mechanics.

To aid students in preparing to study fluid mechanics, the web appendix[124] contains
a review of solution methods for differential equations. Also, several exercises below provide
problem-solving practice that some may find helpful. For instructional videos on mathemat-
ics through differential equations, see reference [88]. For more on solving ODEs and PDEs
see the web appendix [124] and reference[76]. We move on to modeling flows in general in
the next chapter.


