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Advanced Constitutive Modeling — Chapter 9

We have learned that the GLVE

is a good model for:

» Deformations at low rates

* Deformation to low strains
(linear regime)

The GLVE does not work for the
nonlinear regime, due to the problem
of lack of frame invariance.

Fluids with Memory — Chapter 8

Summary: Generalized Linear-Viscoelastic Constitutive

Equations

PRO: «Afirst constitutive equation with memory

*Simple to calculate with

«Can match SAOS, step-strain data very well
«Captures start-up/cessation effects

«Can be used to calculate the LVE spectrum

CON:

GLVE: *Not frame-invariant

+Fails to predict shear normal stresses
+Fails to predict shear-thinning/thickening

+*Only valid at small strains, small rates

t

1©=-| 6- ey

Fluids with Memory — Chapter 8

Shear flow in a rotating frame of reference

GLVE:

Turntable
problem

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Strain-related issues?

= perhaps the problem with the GLVE

model is associated with how strain is
mathematically described.

The question then becomes, how is
strain mathematically described in the
GLVE Model?

Fluids with Memory — Chapter 8

Shear flow in a rotating frame of reference

7(t) = — G(t — t’))='/(t’)dt’

— 00

|

strain rate

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

What is the strain measure that is used in the GLVE model?

t
0=~ | G- pear

]

strain rate

(use integration by parts;
see hand calculations)

5
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Advanced Constitutive Modeling — Chapter 9

The infinitesimal
strain tensor is the
strain measure of the

Generalized Linear-
Viscoelastic Model:

(strain version) " GLVE
z(t) = +f M(t—t dt’
B — o0
0G(t—t')
Mt-t)=s— =
&=t at’
memory
function

Infinitesimal Strain Tensor Turns out:
tr It is the use of the infinitesimal strain
(t t') — f y(t”)dt" tensor as the strain measure that causes
;=

=

the frame-variance in the GLVE model.

6
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Advanced Constitutive Modeling — Chapter 9

We have seen the infinitesimal strain tensor before: when we first
defined strain (when we discussed material functions).

Infinitesimal _ T
strain tensor Y = Vu+ (Vw)
When formally ' Displacemfent Q(trefat) = K(t) _ K(tref)
developed, y(t,t) is function
related to the
displacement function, X, (t)
u(t, t)).

Particle r(t) =|x, (t)
tracking vector

7
© Faith A. Morrison, Michigan Tech U.

What is strain? Summary (from Chs)

Strain is our measure of deformation (change of shape)

For shear flow (steady or unsteady):

2 Strain is the Strain
— 9 / / accumulates as
Y21(ty, t2) = J Y21 (t)dt integral of strain the flow
f1 rate progresses
The time The strain rate is
dya1 _ Fp1 () derivative of the rate of
dt 21 strain is the strain instantaneous
Deformation rate rate shape change
Applying this to each .
component of y and Infinitesimal Yy =Vu+ (Tw)?

o = strain tensor
generalizing to all flows:

8
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Fluids with Memory - Chapter 8

Shear flow in a rotating frame of reference

In addition to the turntable
example, another “flow” we
can use to test the GLVE
model is rigid body
rotation (no strain).

Turntable
problem

Counter clockwise
rigid body rotation (no
strain).

No strain should 4
produce no stress.

9
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9
No stress is generated when a fluid is rotated CCW through 1) (from
position at time ¢ to position at time t’, what does the GLVE

redict? (Warning: later, we are going to consider
CCW rotation from t’ to t through an angle
Y = —; see Table 9.3)

7cosf P(t)

1~

¥ij rsinf

« calculate the infinitesimal strain tensor for rigid body rotation
« use the strain-evident version of the GLVE

10
(note: we need ]=/(t, t') in the GLVE) © Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from t to ¢'?

-0,-0)

ut,t)=r"-r

y(t,t) =Vu+ (Vw)’

(see book for details)

11
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Advanced Constitutive Modeling — Chapter 9

What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from t to ¢'?

From geometry

From trigonometry
y' =7sin(f + ) = 7(sin f cos P + sinyh cos B)
= ycosd; +xsin1/)~
x' = fcos(,b’ i 1/7) = f(cosﬁ cosy — sin B sin 1/3)
= xcosyp — ysiny
z=12z
From definitions of u and y _ _
- xcosy —ysiny —x
u=7t'—7=|ycosy) +xsiny —y
0
Y& t) =vu+ Vw' =

xXyz

12
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

GLVE Prediction for CCW Rigid-Body Rotation
around the z-axis from t to t:
¢ 2(cosyp — 1) 0 0
w@=+] Me-) o0 a(cosg-1) o) o
- 0 0 0/ xyz

13
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

GLVE Prediction for CCW Rigid-Body Rotation
around the z-axis from t to t': WRONG

Stress depends on angle of rotation!

Why does GLVE make this erroneous prediction?

y(1) = Vi 1) + Vu, )
[\ u(t,t) = ) 1)

Because this vector, while accounting for
deformation, also accounts for changes in
orientation. 14

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

7,1 = Vu(t, ) + Vu@, )]
u(®,) =) — @)

Orientation changes
(r changes direction)
Shape does not change
(length of r does not
change)

Accounts for changes in
shape and orientation.

wry=r'—r

Origin O
fixed in space
o) i wery RO wer
/),

.....

Orientation changes
Shape changes

15
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

. time=t’
Consider:

What change does
the deformation
cause in the vector

deforming body at ¢’

that separates two P_.Q
very nearby material
elements?

/ '
fixed coordinate !

system (xyz)

We desire a strain tensor that accurately captures large-strain
deformation without being affected by translation and rotation.

Shape and position of a

time=t

dr Shape and position of
the same deforming
body at ¢

16

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

How does dr map to dr’along a particle path?

T particle label (reference time t)

T’ location at time ¢ of the particle labeled r

Define change-of-shape
tensors that rely on
relative location of two
nearby particles

Particle position at t’

r' is a function of past

position, r’ = f(r)

X
r=\y | =f
ZV
xyz
dx'
df =| &' | =2
dz'
xyz

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

We can relate dr’ to dr using the chain rule.

!

X

! !

r=\y = f(x,y,2)

/
Z 7 xyz

dx' =?
dy' =?
dz' =?

(see text)

18
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Advanced Constitutive Modeling — Chapter 9
Combine answers from 3 directions:
(@' ay' dz') =(dx dy dz),,
dr'=dr-F
' ' '
Deformation-gradient 6_x al 8_2
tensor ox Ox Ox
ox' oy oz
F(t,ld) = = l -
= ad oy
' oy o
In Einstein notation: 0z 0z Oz
r'=r1¢g
rHn=x'n=y,rn=2

Oox Ox Ox
oy 0Oy Oy
Oz 0z 0z)y
or' or'. .
=—==—"Le¢ge
or or, "'

Xyz

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

We can calculate F~1 as follows:

Define: £_1 F=1
Then use: dr'=dr-F
=7

20
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Deformation-gradient ' ' '
tensor G_x al a_z
. ox Ox Ox
dr'=dr-F P & @ | o o,
= oy 0Oy oy or or, "
0z 0z 0z)y.
Inverse deformation-
gradient tensor ﬁ 6_y 8_2
: ox' ox' ox'
f— ’ . - _ A A
dK_dr_ £ Fl(fat)E a_x a_y % :iz%ejem
= oy' oy o or' or' -
& &y oz
0z' 0z' 0z')y.
These strain measures get rid of N
the w prObIem- © Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

We desire a strain tensor that accurately captures large-strain
deformation without being affected by translation and rotation.

Vu These strain measures include translation,
Y deformation and orientation

il

- These strain measures include

F—l deformation and orientation

We canlseparate the deformation and orientation information in £
and £ using a technique called polar decomposition.

(en.wikipedia.org/wiki/Polar_decomposition) 2

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Polar Decomposition Theorem

(en.wikipedia.org/wiki/Polar_decomposition)

Any tensor for which an inverse exists has two
unique decompositions:

A — B 5 Q/‘\
é — Z : 5 Pure rotation tensor
Q = (éT : é)l/z Right stretch tensor 5_1 = QT Orthogonal tensor

U, V symmetric,

— TN\1/2
K - (é ' é ) / Left stretch tensor .
nonsingular tensors

[[=s]

=44V =4-U"

23
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Polar Decomposition

EXAMPLE: Calculate the right stretch tensor and rotation tensor for a
given tensor. Calculate the angle through which R rotates the vector u.

1 0 2 1
4=(0 3 2 u=|2
2 00 1
Xyz Xyz
A=R-U
A-u=R-U-u
w
Pure All the stretch;
rotation some of the
rotation

24
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Polar Decomposition

We have partially isolated the effect of rotation through
polar decomposition.

pure rotation tensor

( (‘ left stretch tensor

(\ 4=R-U=V-R
(—/ right stretch tensor

original (strain) tensor

We can further isolate stretch from rotation by considering
the eigenvectors of U and V.

25
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Polar Decomposition é _ 5 ) g
A=V-R
/]: S = Mk
elgenvectors\% J=VS eigenvalues
Physical Interpretation
4=R-U S
A-$§e=R-U-$ R-$n=0
= 5 : Akfk /111 = Vn
\Tj (stretch first;
then rotate, or
Pure the reverse)
Pure stretch
rotation
PATH II 2%
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Polar Decomposition

A=R-U
A=V-R
U-&=né&
eigenvectors K . 4’/ = v/fj eigenvalues
Physical Interpretation
A=R-U —
A& =R-U-§& pamitl R-& =0
=R Ak In = Vn
/ d (stretch first;
A then rotate, or
Pure the reverse)
o o : !
Omitting the Piion e —h T %
details, the idea is: " pamll
« F,F~! are plausible strain measures (translation has been
eliminated, but they contain rotation)
+ Eliminate rotation by decomposing F, F~* into pure stretch
tensors using polar decomposition
agp p gz(éTé)l/Z
Z — (é . éT)l/Z
27

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Polar Decomposition

A=R-U
A4=V-R
Finite Strain Tensors A V2 U2
U=(4"-pv T T
V=4 A (E E-E ET-E
proposed FT FT-F F-FT
deformation tensors;
contain stretch and F1 F1. (F—l)T (F—l)T .F-1
rotation; V and U are = = = = =
symmetric (FDT| (FDT-F~t F~1.(F~1)T
= - L = =
A\ J
h'd

Cauchy tensor C = F - ET

Fingertensor C~1 = (F~1)T.F1

proposed deformation
tensors; contain stretch
of eigenvectors, BUT NO
ROTATION

28
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Finite Strain Tensors

Now we can construct new constitutive
equations using the new strain measures:

Replace: y(t,t") with: —C(t',t)

Finite Strain Hooke’s Law of elastic solids:
z(t) = +GC71(t,0)

Finite Strain Maxwell Model:

© Faith A. Morrison, Michigan Tech U.

(we use the
negative so that at
small strains we
recovery(t,t'),
like in the GLVE)

29

Advanced Constitutive Modeling — Chapter 9

Now we can construct new constitutive
equations using the new strain measures:

Replace: y(t,t") with: —C(t',t)

Finite Strain Hooke’s Law of elastic solids: Time to
take these
7(t) = +GC71(t,0) out for a
spin
Finite Strain Maxwell Model:
g (t=tn
no ==t
(t) = — 2° 2T, t) dtf

—00

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

() = +GC7'(t, 0)

(this didn’t work when the infinitesimal
strain tensor y(t,t') was used)

31
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

() = +GC7'(t, 0)

Usual solution steps:

1. Begin with kinematics of the flow

2. Calculate the needed tensor elements (y before, €~ now)
3. Calculate the stress

4. Calculate functions that rely on stress (material functions)

32
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

t(t) = +GC7'(t,0)
Usually, start with

Usual solution steps v,¢(t)ore(t), -y ..
1. Begin wit of the flow
2. Calculate the ieeded tensor elements (y before, €~ now)

3. Calculate the stress
4. Calculate functions that rely on stress (material functions)

33
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Our old constitutive
equations were y-based:

z(t) = —py(t)
z(t) = —ny(t)
t
(t) = — Z—Oe_(t—/{t )]z'/(t’)dt’

t

1(t) = — jG(t — t)y()Hdt’

etc.

And our “recipe cards” were, therefore, y-based

34

© Faith A. Morrison, Michigan Tech U.
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Steady Shear Flow Material Functions

Imposed Kinematics:

Michigan Tech
[iass]

Traditional “recipe card”

) ¢(®) ¥21(0,t)
¢(t)x,
v={ 0 ) .
0 /123 }i(’ O
7
¢(t) = yo = constant 0 0 ‘
Material Stress Response: z,,) Ny (t)
i ¥
0 1,0
! y
0 t 0 t

Material Functions: First normal-stress

coefficient

T —T
Viscosity  7(yp) = e
Yo Yo

Second normal-
stress coefficient

LN T11—Tap  —(T11-T23)
Lpl(yo) = 2 - )
Yo Yo

o\ _ T22—T33 _ —(T22—T33)
W, (o) = =57 = 2
Y Yo

35
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Our NEW constitutive
equations are strain-based,
y(t, ), C7H(t',b), etc.:

2() = —Goy (0, 1)

t

—(t=t"

() =+ Z—ge T y(t,t)dt’ () =
- 0G( )

t—t'
() =+ f—,y(t, tdt'
= ot =

etc.

z(t) = +GoC7'(¢, 0)
t

—(t=t"
- Z—ge it tdt’

—00

t

L(t) = — fMgl(t"t)dt’

ot

etc.

— 00

Our recipe cards must now be deformation-based, r,r’ ...

36

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

What is the Finger Tensor C~1(¢',t) in CCW Rigid Body
Rotation from t' to t through an angle y?

t' t

rcosf P(t")

rI

Yij rsin

O

X

37

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t’ to t¢:

x' =trcospf
yr — fsin,B From geometry

From trigonometry

x =1 cos(f + ) =r(cosf cosyp — sin S siny)

=x'cosy —y'siny

y =tsin(f + ¢) = 7(sin f cos Y + sin cos )
=y'cosy + x'siny

z=17

From definition:

ar
E71(t',¢) = Pk

38

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t’ to t¢:

or cosy siny 0
Fl(tt)==—=|(—siny cosy 0
or 0 0 1

xyz

g—l(tl, t) — (£—1)T . E_l

(matches answer in Table 9.3)

NOTE: caption definition of i is in error

39
© Faith A. Morrison, Michigan Tech U.

Imposed Kinematics:

=0

I

Iﬁ\
Il
VRS
N R,
N

xyz

cosy

0

T = unchanged

CCW Rigid Body Rotation “Material Functions”

Jr
i_l(t’,t)=a—;,=<—sin1/) cosyp 0

Michigan Tech
[iass]

Strain-centered “recipe card”

(in a coordinate system with
origin within the fluid)

<x) x' cosyp —y'siny

r=\y =| y'cosy + x'siny
2 xyz 4 xXyz
sinyy 0
) ci(e =1
0 1/ xyz

(no deformation
= no stress)

40

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

z(t) = +GC71(t,0)

41
© Faith A. Morrison, Michigan Tech U.

Steady Shear Flow Material Functions

Imposed Kinematics:

(c'(t)x2>
v=( o
0 /123

¢(t) = yo = constant

Material Stress Response:

Material Functions:

S g To1 _ —T21
Viscosity n(yp) = — = —
0 Yo Yo

Michigan Tech
[iass]

Traditional “recipe card”

¢(t) ¥21(0,t)
1 .
Yo Yo
!
7
0 0 t
T21(8) Ny ()
I ;
To Niyo
! !
0 t 0 t

First normal-stress
coefficient

Second normal-
stress coefficient

LN T11—Tap  —(T11-T23)
qu(YO) = ,yg - ,yg

R
42
© Faith A. Morrison, Michigan Tech U.

W, (y,) = Ta2—%33 _ —(T22-T33)
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Steady Shear Flow Material Functions

Imposed Kinematics:

Michigan Tech
[iass]

Strain-centered “recipe card”

0 0 1 0

Material Functions: First normal-stress

coefficient

T —T
Viscosity  7(yp) = e
Yo Yo

Second normal-
stress coefficient

100 e 1+y?
g-l(t’,t)=<y 1 0) =\ vy
123

. HO) ¥21(0,8)
$(t)x,
v=| 0 1 .
0 /123 }lo e
¢(t) =y, = constant o . /0 f
([ x x +7yo(t—t")
!
r=\r r= <Y> = y
!
Z /123 Z7 123 z 5
y 0

1 0) Y =7vo(t—t")
0 1743

W, (y,) = Ti1—Ta2 _ —(t11-T22)

7 7
. N _ Ta2—T33 _ —(T22—733)
W, (o) = =57 = 2
Yo Yo
43

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

z(t) = +GoC7'(t, 0)

1+y5t> —yot
0 0

0
0
1

0 01

1+y2 ¥y 0
=14/ —
From shear kinematics: | £~ (t't) = 14 10
123

Yy =y, t) =yo(t—t")

(recall sign
convention on
stress)

123

44
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

t
Y=y, t)=| ¢(t")dt"

tr
t

e=¢c(tt) =f E(t")dt""

tr

ccw rotation around é,

© Faith A. Morrison, Michigan Tech U.

Y is the angle from r’ to r in

NOTE: for the )
first time we
have predicted 40 1
nonzero normal - = (11— 722) y
. X
stresses in 20 |
shear. ©
o
=
% T o T
o 04 0.2 0.2 ola
@ 20 ] Y =Yot
21
-40 -
Solid lines, G = 160 kPa
Figure 9.6, p. 325 DeGroot; 45
i
solid rubber © Faith A. Morrison, Michigan Tech U.
Advanced Constitutive Modeling — Chapter 9
shear in
P I-direction uniaxial elongation cew rotation Table 9.3
ensar with gradient in 3-direction around é3 has strain
in 2-direction
tensors for
100 ef 0 0 cosyp —sing 0
F(t, 1) (—"y 1 O) ( 0 et @ ) (sinw cos1p 0) standard
0 01 0 0 e 123 0 0 i 123 ﬂOWS
100 et 0 0 cosy sinyg 0
F () vy 10 0 ed 0 (—sim,‘: cos 0]
00 1/, 00 e/, 0 0 1),
1 =y 0 e 0 0
c(, 1) -y 14+9% 0 0 e 0 1
0 0 1 I
+9 4 0 er 00
c(#1) y o1 0) ( 0 e* 0 ) 1
0 01/, 0 0 &),
(| e—1 0 0 ; ;
e, - 20 0 -1 o 0 (Note t_ht_a(e isa typo in
00 1/, 0 0 -1/, the definition of i in the
, caption of Table 9.3;
—* v 0 e -1 0 0 h . f £
3 () 4y 00 0 ec-1 0 0 t ere‘ is gays rom r to
= 000/, 0 0 1), r’, which is backwards. )

This is correct

46
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Advanced Constitutive Modeling — Chapter 9

Now, let’s fix the Maxwell model.

t
Integral GLVE model z(t) = _f G(t— t’)Z(t,)dt’
(rate version): —o

t
Integral GLVE model =+ f_mM(t — )y, Oadt
(strain version):
aG(t—t")
Mt-ths—
(t—t) =~
Integral Maxwell model
(strain version): I= l l y(t', dt’
M(t _ tl) Y 47

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Lodge model

t e _=t»
Integral Maxwell model T= +f e y(t’ t)dt'
(strain version): = o ’

substitute (-Finger tensor) for —C 1(t t)
infinitesimal strain tensor

Lodge Model:
t No _(&=tn _
(©=-| |Be 7 |ci@ e | wa
- —00 A - does it
predict?

A finite-strain, viscoelastic constitutive equation

48

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate the material functions of steady shear flow for
the Lodge model.

‘ 770 —w -1 14 14
Lodge Model: g(t)=—f = 1L (t',t)dt

49
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate the material functions of steady shear flow for
the Lodge model.

‘ 770 —w -1 14 14
Lodge Model: g(t)=—f —e 1 |CT(,0)dt

50
© Faith A. Morrison, Michigan Tech U.
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Steady Shear Flow Material Functions

Imposed Kinematics:

Michigan Tech
[iass]

Strain-centered “recipe card”

. HO) ¥21(0,8)
$(t)x,
v=| 0 1 .
0 /123 }lo O
¢(t) =y, = constant 0 . /0 .
x' x x + 7yt —t")
! !
7'/ 123 Z/ 123 7'

0

123

0 1

1.0 0 e 1+y%2 y 0
El(t’,t)=<1’ 1 0) crE=( y 10 Y =7Yo(t—t")
123 123

0 0 1

Material Functions: First normal-stress

coefficient

T —T
Viscosity () = 2 —
Yo Yo

Second normal-
stress coefficient

Lpl()-/o) = T11—To2 _ —(T11-T22)

7 7
. N _ Ta2—T33 _ —(T22—733)
W, (o) = =57 = 2
Yo Yo
51
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Lodge model “mo Cod) '
g z(t) =— e A |CTH(t,t)dt
—o |4
107
A=1s
G,=4x10* Pa
g 106,
7(£)
§ 105) | | R 2162)
Lodge Model
Report card:
+ 7 does not .
shear thin n(¥)
: 1{11 iS nOt zero! 10;001 0.01 0‘1 1 10 100 1000
e Y, =0 ' ' ’
yoré st

52
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[iass]

Start-up of Steady Shear Flow Material Functions

] . Needs to become a Strain-centric “recipe card”
Imposed Kinematics:

. ¢(t) ¥21(0,t)

¢(t)x,
v=| 0 1 :

0 /123 }lo L
. (0 t<o "o - 0 ¢
§(0) = {yo t=0 /\
Material Stress Response: z,, SO , N, (D
A— ) 3

Vo1

@ Yoz Yo3
@ —— Yo2
0 t

Material Functions: First normal-stress

0N — f11=7T22
growth coefficient l'pl (t' VO) =

972

Shearstress = T51(t) T (b) "o

growth 1" (tY0) = ——=— Fpp—7F
function Yo Yo Second normal-stress LP+(t 9 ) — T22—T33

unctiol growth coefficient 12 (LYo) = — 3

Yo

53
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Cessation of Steady Shear Flow Material Functions ="

- - Needs to become a Strain-centric “recipe card”
Imposed Kinematics:

() O ¥21(0,t)
2
v= ( 0 ) il
0 Yo
123 i
() — )Y t<0 0 t 0 t

Material Stress Response: z,,)

Material Functions: First normal-stress

decay coefficient llJ1 (t' yO) =

2
Shear stress 70 To1(t)  —T21(t) ro
decay N WYo) =——=—— Toy—T
- Yo Yo Second normal-stress - 5 _ Tp2—T33
function decay coefficient Wy (t,70) = T
54
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EXAMPLE: Does the Lodge model pass the test of objectivity posed
by the turntable example? (remember, the GLVE failed this test)

(@ ©)

fluid

©

<

=I

55
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Turntable Example: Lodge Model

t (D)
z(t)=—f [Z—Se- 2 lg‘l(t’,t)dt’

x ¥
ox  ox'
F_1(t,’t)56_£':8in'éjém: @ a—y
= o’ Or; o) Oy
a o
oz o7 o oz
% & + ot — )
Z/ xyz zZ'

xyz

56
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Deformation in shear flow (strain)

xl (tref) au
r(ty) =] X%, () Va1 (L 1) = 8_x; Shear strain

‘x3 (tref) 123

X1 (tref) + (t - tref)YOXZ

x1(t)
r(t) = | x2(t) = X2 (tref)
x3(t) 123 X3 (tref) 123
(t - tref)]'/oxz Displacement
l_l(tref’ t) =r(t) - f(tref) = 0 function
0 123
57
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Turntable Example
Lodge Model:

58
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Lodge turntable - from stationary frame

x Xo+ (' = Yol SC'+CS' + CC'y |+ (¢ - x)[SS' + CC' — CS'y
r=ly| =|y+0 —1)CC+SS+SCy]+ K - x)-CS +S5C - 85|
z z
xyz xyz
S =sin Q)
S’ =sinQf'
Now, calculate F~* and €. C = cosQt
C' =cos Q)
=yt =t
> o o Y =Yolt—t)
ox  ox ox
E_l(t',t)zﬁzai"j S (A A S
= aﬂ' arjl ayl ayl ayl d

-1

le>

x o & =[]
oz o o)y, =

59
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http://pages.mtu.edu/~fmorriso/cm4650/Lodge_turntable.pdf

Result: 1-2CSy +CH?%  (C*=S*y+8Cy* 0
= (=S +SCr  1+20Sy+5%° 0
0 0 1

xyz

Lodge Model prediction in stationary frame:

L e[ 1-20Sy+CP (=S +SCr 0
r=—[Be | (@-sHyScr  1e2cSy S 0| dr
T LA 0 0 1

S=sinQ¢t C=cosQ¢

" ' ' ' To compare to previous result,
§'=sinQr  C'=cos must consider shear
coordinate system, e.g. t =0

60
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Lodge prediction: stationary frame, t=0

2
- (=1 l+y= 7 0O
r=- J /1—(2)6 A y 1 dt'
—© 0 0
Xyz
Lodge prediction: rotating frame
2
; e |1+
r=- %e A y 1 0| df
% 0 0 1
xyz

61
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Lodge Model (Maxwell with Finger strain tensor)
passes test of objectivity! ‘/

What is the differential form of the Lodge model?

b e _=t0

Lodge Model: z(t) = —f —e 2 lg_l(t’, t)dat'

—00

(see discussion in text...)
62
© Faith A. Morrison, Michigan Tech U.
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Differential Lodge Equation
(Upper-Convected Maxwell Model)

Jdt
—=+v- V- ()" z-1-Vv|=—ney

T+ 4
= Jt
N Upper-Convected
T+ AT = —1ngY Maxwell Model
v Dt
1=—— W) t—1- Vv
1=7 ) -1V
Looks like the Maxwell model, but with
a new type of time derivative. We call
Dt Jdt it the upper-convected time derivative.
—=|=+v-Vz
Dt at - = 63
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

The Upper-Convected time derivative can be understood to be the
time derivative calculated in a coordinate system that is translating

and deforming with the fluid (see section 9.3).

72
material grid at time t' y‘)\c
same material
grid at time ¢
P Q
5 P
s
X, X!
< : N
< o >
\4

upper-convected time derivative

Dt
T D—;—(VQ)T-L—;VQ

LE

64
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Other Convected Derivatives

Upper-convected time derivative

Dz
D—:—(VE)TZ_E'VB

Lower-convected time derivative

Dz
D—;+Vy-£+£-(l71_7)T

Corotational time derivative

D£+1 N
D—t s(@-1+1-0)
w=Vy— (V)

The vorticity vector 65
© Faith A. Morrison, Michigan Tech U.
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t _

Lodge Model: _ Mo &t ., :

(upper-convected Maxwell) )= _f e A LT, Ddt
—o0

¢ _

Cauchy-Maxwell Model: N _{&=t) -

(lower-convected Maxwell) z(t) = +j ¢ A | C(t, t)dt
—o0

t
Lodge Rubberlike Liquid 7(t) = — j M(t — t')C_l(t’, t)dt'
Model: = —o =

66
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Lodge Model: _ _=t) t’ 1
(upper-convected Maxwell) () = - [ (t', t)dt

(fix Maxwell with the Finger tensor)

t _

Cauchy-Maxwell Model: N _{&=t) -

(lower-convected Maxwell) ~ £(t) = j e 4 |C@Et)dt
— 00

(fix Maxwell with the Cauchy tensor)

t
Lodge Rubberlike Liquid T(t) — j M(t —t)C (', t)dt’
Model: —o =

(fix GLVE with the Finger tensor)

67
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t -
Lodge Model: _ Mo &t ., :
(upper-convected Maxwell) g(t) - f_oo z¢ 1|t (', t)dt

(fiX Maxv‘:nll iith tha Cinnnv tanony

Tlme to take

«= them out fora
Lodge Spln' ¢

- = s

Model: = J_o

(fix GLVE with the Finger tensor)

68
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TABLED.2

Predictions of Lodge Equation or Upper Convected Maxwell Model in Shear and

Extensional Flows

Lodge " g

nt @, y)
. oy
Equation e
vy y)
(UCM)
i)
W2 (y)
Cessation nm (@, ¥)
v y)
vy ()
Step shear strain G(t, )
Gu, (t, )
Gy, (t, 1)
2. Extension
Startup
Uniaxial (b = 0, & > 0) it (t, éo)
or biaxial (b = 0, & < 0) or i (1, é0)
Planar (b = 1,é > 0) ip, (¢, &)
ik, (4, é0)
Steady
Uniaxial (b = 0, é > 0) 7(é0)
or biaxial (b = 0, < 0) or 75(é0)
Planar (b= 1,éo > 0) iip (é0)
7ip, (é0)

r;o(l—e‘x')
2 [1-e (14 4)]
0
70 = Got

2GoA = 2ok
0

noe™
2hnge

s (3-28F - ac?)
A=1-201
B=1+éh

2 ,

(-2 —ce?)
A=1-2é)
C=1+2A ~
20 o
o) _ %
c(' <)
3mo

pmse o ML e SN0
(1-22é)(1+2é) AB

4o _ dmo
1-432 ~ AC

20 _2m
T+2r~ C

69
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TABLED.3

Predictions of Cauchy-Maxwell Equation or Lower Convected Maxwell Model in Shear and

Extensional Flows

Cauchy- o

Startup nt@y)

Maxwell e

Equation

v y)

Steady ()

(LCM) s

Cessation @)
ey
L9}
Step shear strain G(t, w)
Gy, (1, 0)
Gw, (¢, )
2. Extension
Startup
Uniaxial (b =0, > 0) ii*(t, é)
or biaxial (b = 0, & < 0) or i3 (t, éo)
Planar (b = 1, é > 0) iip, (t, é0)
ik (t, é0)
Steady
Uniaxial (b =0, é > 0) ii(é0)
or biaxial (b = 0, éo < 0) or i (é0)
Planar (b = 1,40 > 0) i, (éo)
iip (é0)

rm(l A;‘i)
o [1-et (14)]
—w}
no = Gok
2GoA? = 2noA
—w

M (5_3pe - ce®
L_D(s e - ce®)
C=1+2p)
D=1-én
22 -act -t
A=1-2%h
=2m -3
2 (%)
___m _3m
(1+2é)(1-2é) ~ CD

—4no__ —4mo
1-4x2 ~ AC

—2n9 =2ng

T-2ex A

70
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SUMMARY:
Approaches to finite-strain
constitutive equations

(differential Maxwell 0t
10+ A
model 0t

equivalent
A

replace with 7, z,
ﬂ or other,

t N
integral Maxwell — 77_0 | N,
model E(t) _]-_ € \Z(t’ t 2dt

objective, time
derivatives

\
\
1

= —ToY

1
1
/7

t-tnl”"

~

o [4?

7
~ -7

or

“ replace with —C™1,C,

strain measures

other, objective, -

71
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Methods of Improving Constitutive Equations

We have seen two techniques SUMMARY:
to generate finite-strain

L . constitutive equations
constitutive equations from the

. Non-objective time derivative objective, time
Maxwell equation.

model

* Fix the time derivative
. . integral Maxwell
* Fix the strain measure model

equivalent

Advanced Constitutive Modeling ~ Chapter 9

Approaches to finite-strain

differential Maxwell 7 (¢) +A%‘: A

replace with Z f
or other,

__ | derivatives

oo 8

() = jt [%e‘gt%w]’i(t, t;}dt’

replace with —C~1,C,
or other, objective,
strain measures

We can also change the
form of the basic equation.

elinear modifications
*non-linear modifications

72
© Faith A. Morrison, Michigan Tech U.
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form of the basic equation.

Maxwell Model - Mechanical Analog

dat )
71 (t) + Aa—il = —MNoY21

Jeffreys Model - Mechanical Analog

0Y21
ot

0T,
t

T1(t) + A4 P)

= —To <1721 + 4,

73
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Other Constitutive Approaches form of the basic equation.

Simple Maxwell Model, 075 .
shear flow only T21(0) + AW = —No¥Y21

Upper-Convected Maxwell

v .
Model, general flow () + 2z = —NoY

Vi
G777

retardation time

. Jat ay
Simple Jeffreys Model,  7,,(t) + A, 21 o <y21 + A, ﬂ)
shear flow only at ot

Upper-Convected Jeffreys v _ . v
Model, general flow E(t) + 112 =—To ()z’ + /12]=/)
(Oldroyd B Fluid)

74
© Faith A. Morrison, Michigan Tech U.
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We can also change the
form of the basic equation.

Non-linear modifications of the Maxwell Model

White-Metzner Model ny)v >
(brute force shear thinning) () + G_£ =-n(Ny
0 L

Oldroyd 8-Constant Model: comprehensive continuum mechanics

1 1 1
z(t) +/11£ + E(/Il - 1) ()=/ Ttz )=/) +E,u0(tr E)L/ tow (g:);/)i

= <o (1 + 228 + G =2 (71) + 3% (1))

The Oldroyd 8-constant contains many UCM
other constitutive equations as special

cases. UCM + terms = UCJ

75
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We can also change the
form of the basic equation.

The Oldroyd 8-Constant model contains all terms linear in stress
tensor and at most quadratic in rate-of-deformation tensor that are also
consistent with frame invariance.

v 1 . N 1L o1 )
() + 4z + 5(21 — 1) ()z’ Itz Z) + E#o(tr l))z’ + e} (£- L’)i
. v N, Lo
== <)=/ + 2y + (A2 — 12) ()=/ . )=/) tov, (1; );) i)
Giesekus Model ‘L’(t) + AZ + a_/l‘[: T= _770]7
= = 0 = = =
——
quadratic
The only way to choose among in stress

these nonlinear models is to

compare predictions. 76
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White-
Metzner

We can also change the
form of the basic equation.

Predictions of White-Metzner Equation in Shear and Extensional Flows [26]

TABLE D.5
1. Shear
Startup nt@, y)
v, y)
vre, )
Steady n(y)
()
W2(¥)
2. Extension
Steady
Uniaxial (b = 0, ép > 0) 7(é0)
or biaxial (b = 0, &y < 0) or g (éo)
Planar (b = 1, é > 0) p, (€0)
7ip, (€0)

n) (1-¢73)
MR 1 -7 (1+ 155)]

0

n(y)
2n(PA(Y)
0

3n(¥) 3n(¥)

[=2xMé][1+r)e0] ~ AG)BG)

A(p) = 1 - 2%A(p)
BG) = 1+ A ()

@) 4y
1-42Ap)  AMCH)
A@y) =1-260M()
C») = 1+2éA()

@) _ 2
1+260(7)  C()

‘M) =n()/Goand y = |y|.

71
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TABLE D.4

Predictions of Oldroyd B or Convected Jeffreys Model in Shear and Extensional Flows [26]

1. Shear

Oldroyd B
(Convected
Jeffreys)

Startup

Steady

Cessation

SAOS

»

Extension
Startup

Uniaxial (b = 0, é > 0)
or biaxial (b =0, é < 0)

Planar (b = 1,é > 0)

Steady

Uniaxial (b =0, é > 0)
or biaxial (b = 0, & < 0)

Planar (b = 1,é > 0)

We can also change the
form of the basic equation.

7ty

e,y
v @, )
nw)
i)
¥ ()
)
v, y)
Wy (e, 7)
[®)

G"(@)

ii*(t, éo)

or i3 (t, é0)

ik, 1, &)

i é0)

7i(éo)
or 718 (é0)

i (€0)

7ip (é0)

% (1 = :il) (3723;% 715?.)

2 A; g
w2 (<) (-

A2 A2 e
”°[ﬂ*(“i)(“' )]
20 (1 = A2) [1 —&% (1 + i)]

A

0

o
2n0 (A1 — A2)
0

8.2y
1-2)e %
')u( M)e

2001~ A)e
0

*1 = A)a?
1+ ja?

1+ Ahpe?
1+ a2

no

now

A=1-2n
B=1+éh

2 A i

T"Z(l—r:)(z_zz £ _ce Yx‘)
A =1-2\
C=1+2k

. 1=
3o (22
ﬂn(hi» =

e

)
)

&

>
2

¥

4no

>
»|
A

78
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Advanced Constitutive Modeling — Chapter 9 We can also chanae the
form of the basic equation.

We can also to add non-linearity and thus
produce new constitutive equations.

Factorized Rivlin-Sawyers Model

z(t) = +jM(t_t,)(q)z(llslz)g_q)l(llalz)gl)dt’

Factorized K-BKZ Model

(1) = +jM(t t)2—C ZZTUC dt’
1

14, 1, are the invariants
of the Finger or
Cauchy strain tensors
(these are related).
Again, the only way to choose among these nonlinear
models is to compare predictions

(see R. G. Larson, Constitutive Equations for Polymer Melts).

79
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Advanced Constitutive Modeling — Appendix D Welcan'also chanaethe
change the
form of the basic equation.
- TABLE D.6
FaCto rlzed Predictions of Factorized Rivlin-Sawyers Model in Shear and Extensional Flows [26]
Rivlin- L. Shear N
Steady y M Py + $7) d.
Sawyers () /0 (5)s(®1 + P2) ds
¥i(y) /; M(s)s* (D) + ®2) ds
00
¥a(¥) - f M(s)s*®y ds
0
SAOS G'(w) fm M(s)(1 — cos ws) ds
0
G"(w) f N M(s) sin ws ds
0
2. Extension
Steady

~r . 1 %9 " " .
Uniexil (6= 060> 0) i) - [ M) [0 (4 ) 1 0y (e - )] s
orbiaxial (b =0,é <0) orip(é) 0

Planar (b = 1,4 > 0) gy o) i j; T M) [0 (2 - o) 4 0, (P )] ds

d, iG> : .
£ —ios ¢osY (b0 _ —dos
im (o) P ./‘; M(s)[(@le + D7) (07 — ™40 )] ds

80
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We have fixed all the obvious flaws in our constitutive
equations, and now we have too many choices!

We could make predictions and compare with
experimental data, but some of the models (Rivlin
Sawyer, K-BKZ) have undefined functions that must be
specified.

How to proceed? ( We need some guidance.

All along we have taken a continuum-mechanics
approach. We have run that course all the way through.
Now we must go back and seek some insight from
molecular ideas of relaxation and polymer dynamics.

81
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Advanced Constitutive Modeling — Chapter 9
Some of what we have learned from Continuum Modeling

*We can model linear viscoelasticity. The GMM does a good job; there is no
reason to play around with springs and dashpots to improve linear viscoelasticity

*We can model shear normal str . The kind of deformation described by
the Finger tensor (affine motion) gives a first normal stress difference and zero
second-normal stress; the kind of deformation described by the Cauchy tensor
gives both stress differences, but too much N,.

*We can model shear thinning. But only by brute force (GNF, White-Metzner)

*We can model elongational flows. But we predict singularities that do not
appear to be present.

*Frame-Invariance is important. Calculations outside the linear viscoelastic
regime are incorrect if the equations are not properly frame invariant.

*Thinking in terms of strain is an advantage. When we think only in terms of
rate, we can only model Newtonian fluids.

*Looking for contradictions when stretching a model to its limits is productive.

*Continuum models do not give molecular insight. We can fit continuum
models and obtain material functions (viscosity, relaxation times) but we cannot
predict these functions for new, related materials
82
© Faith A. Morrison, Michigan Tech U.
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It's time for a new approach.

Molecular Constitutive Modeling

*Begin with a picture (model) of the kind of material

that interests you

*Derive how stress is produced by deformation of that

picture

*Write the stress as a function of deformation

(constitutive equation)

© Faith A. Morrison, Michigan Tech U.
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second half # Molecular

: Advanced Constitutive Models

Two Approaches to Stress- Michigan Tech
Deformation Modeling: el

Continuum Molecular
Modeling

Modeling -| ~.

.'r"
“Ey
W

- Thisis the ultimate smoothed over * We picture elements that can be

model—matteris a continuum field modeled and use models to predict

thatabstracts all the molecular observable behavior

structure to averaged properties + Modelingefforts identifyfeatures
* Worked for Newtonian fluids! thatare common and demonstrate
= p (density), u (viscosity), , (heat links to observable behavior

capacity), k (thermal condudtivity),
etc.

Professor Faith A. Morrison

Department of Chemical Engineering
Michigan Technological University

© Faith A. Morrison, Michigan Tech U.
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CM4650
Polymer Rheology

.

UNDERSTANDING

"'Rheology
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Advanced Constitutive Modeling — Molecular modeling

At the beginning of the course we started with materials . . .

Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces (contact)— this is the tough one

choose a surface

. through P
f=| at P\|dS

/' on dS
the
force on P
that
surface /—\—/

We need an expression for the
state of stress at an arbitrary
point P in a flow.

85
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At the beginning of the course we started with materials . . .

Molecular Forces (continued)

Think back to the molecular
picture from chemistry:

At that L7

time we \‘ \'\," i
wanted to J ) / !

avoid —@® N
specifying R

much

about our

materials. he specifics of these forces; he

connections, and interactions
must be captured by the

molecular forces term that we

seek.

86
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At the beginning of the course . . .we turned to continuum mechanics.

Molecular Forces (continued)

*We will concentrate on expressing the molecular
forces mathematically;

*We leave to later the task of relating the resulting
mathematical expression to experimental observations.

First, choose a
surface: N
n
«arbitrary shape
esmall
vl

stress /\

atP S =f Whatis £

ondS

I~

87
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At the beginning of the course . . .we turned to continuum mechanics.

Molecular Forces (continued)

Assembling the force vector:

[ =dS n-[1,00 +T1,04 + 11524
+ 111,88 + 1128, + 115,88
+ 111588 + 11,300 + H33é3%]

We swept all
molecular contact
forces into the

3.3
=dS n- I,,2.e
stress tensor. Z Z pmEpCm

p=lm=1
=dSn-I1,¢6.¢

pm*pm

f=dSa-I )

Total stress tensor

Now, we seek to (molecular stresses)

calculate molecular
contact forces
directly from a
molecular picture.

88
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Two Approaches to Stress-
Deformation Modeling:

Michigan Tech
[2ees]

Continuum Molecular
Modeling Modeling
\

control volume

e This is the ultimate smoothed over
model—matter is a continuum field
that abstracts all the molecular
structure to averaged properties

e  Worked for Newtonian fluids!

* p (density), u (viscosity), C,, (heat
capacity), k (thermal conductivity),
etc.

A\

5\/

* We picture elements that can be
modeled and use models to predict
observable behavior

* Modeling efforts identify features

that are common and demonstrate
links to observable behavior

89
© Faith A. Morrison, Michigan Tech U.

Advanced Molecular Modeling in Rheology (Chapter 9, 2" half)

Restart:

Molecular Modeling?

Two Approaches to Stress-
Deformation Modeling:

] michigan Tech

Continuum
Modeling

Molecular
Modeling -| ~,
Tatal

amasne

* Thisis the ultimate smoothed over
model—matteris a continuum field
that abstracts all the molecular
structure to averaged properties

+ We picture elements that can be

= Modelingefforts identify features

modeled and use models to predict
observable behavior

3/4/2020

= Worked for Newtonian fluids!
« pldensity), u (viscosity), G, (heat
capacity), k (thermal condudtivity),

* Start with a specific material (known etc
chemistry, structure)

thatare common and demonstrate
links to observable behavior

¢ Postulate a dominant physics that produces an
observed behavior

e Seeifit’s TRUE

* Use model to address engineering,
technology, end-use questions

3/4/2020
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Long-Chain Polymer Constitutive Modeling

molecular tension  ~ R
force on arbitrary  f =dA n-(—7) stress tensor

surface \/

We now attempt to calculate
molecular forces by considering
molecular models.

=+

Polymer Dynamics end-to-end
vector, R

Long-chain polymers
may be modeled as
random walks.

91
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Long-Chain Polymer Constitutive Modeling

molecular tension T~
stress tensor

force onarbitrary [ =dA n-(-7)
rf — =
suface 2

We n WARNING:

- There is way more to
this than we can
cover; we're taking a

four only

may be modeled as VAN,
random walks.

)

Polyme

92
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Polymer coil responds to deformation

A polymer chain adopts the
most random configuration
at equilibrium.

=

end-to-end
vector, R

When deformed, the chain
tries to recover that most
random configuration,
giving rise to a spring-like
restoring force.

spring of equilibrium length
and orientation R

We will model the chain dynamics
with a random walk.

93
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Gaussian Springs (random walk)

Equilibrium configuration distribution ﬁ )
function - probability a walk of N steps v, (R)=| ‘= e P RR
of length a has end-to-end distance R - NE/s

From an entropy calculation of the work needed to 3kT
extend a random walk, we can calculate the force f =
needed to deform a the polymer coil — Na2

=5

If we can relate this force, the force to
extend the spring, to the force on an
arbitrary surface, we can predict rheological
properties

V4

molecular tension 7

force onarbitrtary  f =—dAn-t stress tensor

surface \/ <

74

© Faith A. Morrison, Michigan Tech U.
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Molecular force generated by deforming chain

~ Tension Force on surface
f = = dA due to chains
J force on dA

of ETER
A —

o N
Pro_bablllty Probability Force exerted
chain of ETER . .
crosses surface chain has ETE || by chain w/

R ETER

(ﬁ'E)v;>

(see next slide)

L/1=3“;£

w(R)dR,dR,dR, Na

v = number of polymer 95

chains per unit volume © Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Molecular modeling

Probability chain of ETE R crosses surface dA

intersection

with dA \l

Probability .
chain of ETER | R{V
crosses surface | = ( )
dA v

96

1/v = volume per polymer chain © Faith A. Morrison, Michigan Tech U.
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Molecular force generated by deforming chain

1

~ 3kTv3 (.
== (iR R)

(R-R)=[[[R-R y(R)dR dR,dR,

BUT, from before . . .

= molecular tension

f =—dAn-t €= force on arbitrary
I = surface in terms of T

Comparing these two
we conclude, 3kTv <R R> (dA %)
T =— I IX =y

Molecular force generated by
deforming chain

97
© Faith A. Morrison, Michigan Tech U.
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How can we convert this equation,

Molecular stress in a fluid generated
by a deforming chain

which relates molecular ETE vector and stress, into a constitutive
equation, which relates stress and deformation?

We need an idea that connects ETE vector
motion to macroscopic deformation of a polymer
network or melt.

a “model”
98

© Faith A. Morrison, Michigan Tech U.
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Elastic (Crosslinked) Solid

Between every two crosslinks there is a
polymer strand that follows a random
walk of N steps of length a.

Ry

ETE = end-to-end vector R
Distribution of ETE
vectors
Ry

99
© Faith A. Morrison, Michigan Tech U.
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Affine motion

How can we relate changes in end-to-end vector
to macroscopic deformation?

AN ANSWER: affine-motion assumption: the macroscopic

dimension changes are proportional to the
microscopic dimension changes

M “,1

There is no internal slippage of polymer chains:
deformation with length scale.

100
© Faith A. Morrison, Michigan Tech U.
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Consider a general elongational deformation:

A4 0 0
Inverse deformation 1
gradient tensor, F~1 £ =10 4 0
0 0 /1’3 123
For affine motion we can relate the components of the
initial and final ETE vectors as, “ETE”=“end-to-end”
ETE after '
\ ﬂqu
R, R R '

-

AR,
3
ETE before 123

101
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We are attempting to calculate the stress tensor with this
equation:

_3kTv<££>

L

(R-R)=[[[R-R w(R)dR dR,dR,

\

I

AR But, where do
R(t)=| L,R; we get this?
/13R3 123 Configuration

distribution function

102

© Faith A. Morrison, Michigan Tech U.
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Probability chain has ETE

between R and R+dR: Q w(R)dR,dR,dR;

Configuration distribution
function

wo(R) = % e/ EE

Equilibrium configuration distribution
function:

But, if the deformation is affine, then the number of
ETE vectors between R and R+dR at time t is equal to
the number of vectors with ETE between R’ and
R+dR’ at t’

Conclusion: y(R)=w,(R'") = [%j e FRE
4

103
© Faith A. Morrison, Michigan Tech U.
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Now we are ready to calculate the stress tensor.

3kT
r=—" 7 (R R)
(R-R)= ”jﬂ- R w(R)dR dR,dR, ok
wy )T
R(t)=| LR, ey
ZBRé 123 W(£)=Wo(g):(ﬁ) e’ B

. . 2 NN
(much algebra Final solution: 7 =-vkTA e.e
omitted; solved in — 17171

Problem 9.57)

104
© Faith A. Morrison, Michigan Tech U.
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A0 0
Final solution for stress: 7 = —vkTAée. =—vkT| 0 4 0
0 0 )

Compare this solution with the Finger strain tensor for this flow.

2 0 0
c'wn=(F"f-Fi=l0 2 o
0 0 )

23
Affine motion

Since the Finger tensor for Z — _VkTg—l

any deformation may be
written in diagonal form

(symmetric tensor) our Which is the same as the finite-strain

derivation is valid for all Hooke’s law discussed earlier, with G = vkT.
deformations.

105
© Faith A. Morrison, Michigan Tech U.
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What about polymer melts?
Non permanent crosslinks

Green-Tobolsky
Temporary Network Model

The model: * v junction points per unit volume = constant
*ETE vectors have finite lifetimes

*when old junctions die, new ones are born
*newly born ETE vectors adopt the equilibrium
distribution

Use a statistical
approach:

Probability per unit
time that strand dies
and is reborn at =

1 [ Probability that strand
equilibrium A

retains same ETE from t’ to ] =P,
t (survival probability) ot

106
© Faith A. Morrison, Michigan Tech U.
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vector between t’ and t’ + At?

Probability that strand
retains same ETE from ¢’
to t (survival probability)

Pt’,z+At =

1 1+A1
dP.
t,t — _lPt't
dt A
InP,, = —%+ C
(=)
Pz’,t =e *

What is the probability that a strand retains the same ETE

Probability that
strand does not die
over interval At

107
© Faith A. Morrison, Michigan Tech U.
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The contribution to the stress tensor of the
individual strands can be calculated from,

r

Probability that
___ | strandis born
— | between t’and

Stress at t from
strands born
between t’ and
t'+dt’

Probability
that a strand
survives from

Affine
motion

=71

Stress generated by
an affinely deforming
strand between

Green-Tobolsky
temporary network

t' +dt t'tot t'and t
M1 (=) 1 .
dr = Zdt’} e [~ac @)
t [¢ _@=tn]
7(t) = —f lie 2| CTE, t)dt

mode (Lodge model)

Mo
G=—
A 108
© Faith A. Morrison, Michigan Tech U.
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Oh no, back LG el
where we started! z(t) = _f [76 A lg L', at'

NO!

Green-Tobolsky temporary network
mode (Lodge model)

We now know that affine motion of strands with equal birth and death rates
gives a model with no shear-thinning, no second-normal stress difference.

To model shear-thinning, N,, etc., therefore, we must add something else to
our physical picture, e.g.,

*Anisotropic drag
*nonaffine motion of various types

109
© Faith A. Morrison, Michigan Tech U.
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Anisotropic drag - Giesekus

In a system undergoing deformation, the surroundings of a given molecule
will be anisotropic; this will result in the drag on any given molecule being

anisotropic too.

2

8kt
Starting with the dumbbell model (gives UCM), replace with an

anisotropic mobility tensor B/A. Assume also that the anisotropy in B is
proportional to the anisotropy in z.

B-I="1

== = G—
v aAl .
Giesekus Model L(t) + Az + TI_L: T ="NoY
0 L

see Larson, Constitutive Equations for Polymer Melts,
Butterworths, 1988 110
© Faith A. Morrison, Michigan Tech U.
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Constitutive equations incorporating non-affine motion include:

Gordon and Schowalter: “strands of polymer slip with respect to the
deformation of the macroscopic continuum”; see Larson, p130 (this model has
problems in step-shear strains)

o

strand slippage Non-Affine motion

Dt &
= _=_ T, _+. - RRY, 7 . before
L=De )" -z—-z-Vv+ 2 (L vty L) Affine é
motion
*Phan-Thien/Tanner after

*Johnson-Segalman

Larson: uses non-affine motion that is a generalization of the motion in the Doi
Edwards model; see Larson, Chapter 5

Wagner: uses irreversible non-affine motion; see Larson, Chapter 5

see Larson, Constitutive Equations for Polymer
Melts, Butterworths, 1988

111
© Faith A. Morrison, Michigan Tech U.
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Reptation Theory (de Gennes)

L e R

Retraction (Doi-Edwards) Non-Affine motion
Affi before
Ine
motion @

after

R~

O l_L__._
A ST O

© Faith A. Morrison, Michigan Tech U.
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Step shear strain - strain dependence

10,000
G(t), Pa *ne
4 A. - =]
1,000 | APy
* X Aa A.'l."»’ <187
o X AAAAA.I a®e m3.34
o+ X x S0, m %, A522
o + %o Xxy fa B o », 6.68
100 +—00g A * 10 H
oty o.. Xy LIS X
< <>+++ o X > ®134
Cognti ek x AN +187
Ot @ x ATe 054
<& + x A s
10 o +©®
o 4L eX A
< ot OX
ot oK A
ot®
14 +o
< +>t<.
<o
+
0 ‘ ‘
Figure 6.57, p. 212 Einaga 1 10 100 1000 10000
et al.; PS soln time, s
113
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Step shear strain -
Damping Function
100000 =
c 1 n | ]
2 "
After retraction the relaxation E "
is governed by the memory E. .
10000 *ed function M(t — t") — 5 -
AL u
RA L %) e N\ [ ]
‘ <
[\] .'{ 0.01
&- 1000 - 01 T " 100
o M e,
0 .
3 Depending on \\ The Doi-Edwards
E gL thestraina % model does a good job
5 different L X4 of predicting the
amount of % damping function, h(y)
stress is & (see Larson p108)
relaxed during o9
10 A -
retraction ®
+
[Retractlon time
1 ‘ ‘ ‘ Figure 6.58, p. 213
1 10 100 1000 1000 Einaga et al.; PS soln
time, t 114
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Non-Affine motion
Predicts a strain i

measure Affine &
motion

Doi-Edwards Model

W(ler

L@

;(.‘::
"F -1 I\‘\L
2

1 2rrw MM'Fil )
Q(t',t):4—”5 —= = lsin@ded¢
= 00

~ -1
7T ”"E

T=- jM (t —t')g(t',t) dt’

<>

Predicts a G = 8G?
i A

memory M(t—t’)zZ—’e ‘ Gl, = 2]\; Zl. I%—z

function iodd Tl 1
(Factorized K-BKZ type) Predicts a
nr ) ) relaxation

U’ = unit vector that gives time
orientation of strands at e auiE

time t’
M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 74, 1818 115

(1978); ibid 74 560, 918 (1978); ibid 75, 32 (1979); ibid 75, 38 (1979) . . L
© Faith A. Morrison, Michigan Tech U.
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1
Doi-Edwards Model _—t 0o v
1 1
Steady Shear Yo
SAOS
or b YK 1 0,000
M. Doi and S. Edwards J. Chem Soc.
Faraday Trans Il 75, 38 (1979 L
y (1979) lpz

. lp2,0
n i ; 5
- «Ta
No KSR Fic. 5.—First and the second normal stress coefficients y;(x) and #;(x) in steady shear flow. [Note

I that $,(0) < 0, so that $,(x) < O].
Mo
o1}
r]l
Mo |
o 1 10
Ty, #Ty

Fia. 3.—Non-linear viscosity () in steady state, the modulus, |7*(w)|, and the real part, 7'(w) of
the linear dynamic viscosity. All quantities are normalized by the steady state viscosity at zero
shear rate, 7(0).

116
© Faith A. Morrison, Michigan Tech U.
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Doi-Edwards Model To4 (1) % ‘
Shear Start Up — 3
T21, P ¢
M. Doi and S. Edwards J. Chem Soc. 3
Faraday Trans Il 75, 38 (1979)
0

1Ty
FiG. 6.—Shear stress when a shear flow is started at 7 = 0 with shear rate «.

08 r— 1

06

N, (t)
Nl,oo (t)

0.4}

0.2

1 1 1 1 1
0 1 2 3

Ty
FIG. 7.—Growth of the first normal stress component when a shear flow is started at £ = 0_with
shear rate «.

[oxx(t; )= ayylt; N /[0xx(0 ; 1) = opp(e0 5 x)]

117
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Doi-Edwards Model Elongation = '
Steady Elongation i;‘r’:g: 0
Elongation Startup difference

=3
o

M. Doi and S. Edwards J. Chem
Soc. Faraday Trans Il 75, 38 (1979)

Lozt 5 1) = 0xxlt 3 9)/[022(20 5 K) = ax(e0 5 K)]
o
~

0.2
! 7 (K)/710)

n | 0 1 2 3

— 37(x)/ 9(0)
T’ 0 t/Ta

FIG. 13.—Growth of stress when an elongational flow is started at ¢ = 0.
30 (¥ )il
Mo |
0.1 1 10

3

FiG. 12.—Steady elongational viscosity 7() and the steady shear viscosity 37(x). Both are normalized
by 7(0) = 37(0). 118
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Doi-Edwards Model
Large-Amplitude Step Shear

M. Doi and S. Edwards J. Chem Soc.
Faraday Trans Il 74, 1802 (1979)

S (D/A

10 1P

Fi6. 6.—Strain dependent part of the stress relaxation function for simple shear [eqn (6.7)]. ~Circles,
observed values [after ref. (11) : sample, polystyrene solution in diethyl phthalate ; molecular weight,
3x10°; concentration, J 0.166gcm~>, O- 0.221 gcm~>, Q 0.275 gcm~?].  Solid curve, eqn (6.8).

G(t), Pa
0 Fye
28 a %y,
°x B, Ty e <
BRIV O eais
Sox, tmisgee e
ot @0 X, 4, B o
o Sedne, talaey o
5 cy g 10
SRS T
BTN
oottt ®ex A8 o
o+ Teox i
o e
ol ex
orera
: o
o
o'%
o
N
: o 0 o0 o0
time, s
10
=
g 1 L] [ ]
2
k4 L}
g
32 [ ]
3
2 -
3
L]
E o
hd L]
L}
L]
001
01 1 0 100
10 strain

Figure 6.58, p. 213 Einaga et al.; PS soln

Broken curve, eqn (7.4). In the ideal gaussian rubber fin/A is constant.

119
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Doi-Edwards Model

Correctly predicts:

Rati *
Ratio of v,

*shape of start-up curves

*shape of h(y,)(nonlinear step strain, damping function)
*Predicts g = AM3

sshear thinning of n(y), W1 (y) Tentativel}/
tension-thinning elongational viscosity 7, (¢) conclgde_.
shear thinning
is an issue of
Fails to predict: non-affine
“no = AM34 motion
+shape of shear thinning of n(y), %1 (y)
sreversing flows
*Elongational strain hardening (branched polymers)
120

Non-Affine motion

LM an o
ine

=

motion @

wfter

(=
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Advanced Models

Long-chain branched polymers

Pom-Pom Model (McLeish and Larson, JOR 42 81, 1998)
Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

+Single backbone with multiple branches

*Backbone can readily be stretched in an extensional flow, producing strain
hardening

*In shear startup, backbone stretches only temporarily, and eventually collapses,
producing strain softening

*Based on reptation ideas; two decoupled equations, one for orientation, one for

stretch; separate relaxation times for orientation and stretch) 21

© Faith A. Morrison, Michigan Tech U.
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Extended Pom-Pom (Verbeeten, Peters, and
Baaijens, JOR 45 823, 2001)

LDPE melt, BASF Lupolen 1810H at T=150°C

10 .
O £=0.0030 |s”']
X £=00102 |s7]
—_ +  £=00305 [s)
i « * £=0103 (s
PredICt§ £ ol Bemom2 1y
elongational ZI0°] 0 e-10 1Y
. =
strain z 'Y A
hardening g
5
= 5
:é 10
[~
=]
4 :
10* »
107 10° 10 i0*
Time ¢t Isl

FIG. 5. Transient and quasisteady state (insef) uniaxial elongational viscosity 7,, of the XPP model for Lupolen
1810H melt at T = 150°C. »; = 2/q;, & = 0.0030, 0.0102, 0.0305, 0.103, 0.312, 1.04 s~ ..

122
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Extended Pom-Pom (Verbeeten, Peters, and
Baaijens, JOR 45 823, 2001)

LDPE melt, BASF Lupolen 1810H at T=150°C LDPE melt, BASF Lupolen 1810H at T=150°C
10 10°

O §= 00015 O ¥=001[s"}
x =001 s X y= 003
+ y=003 5] + =03 (s}
o y=01 |5 * y= 10 (s}
o y=03 |5 10°H @ =100 s
O =10 s

v =100 s

Viscosity n* [Pa -s]
=)

First Normal Stress Coefficient ‘¥{ [Pa -s?]

107 10 10 10 10~ 10° 10° 10°
Time t sl Time t Is)

FIG. 8. Transient and steady state (inset) shear viscosity 7 (left) and first normal stress coefficient W' (right)
of the XPP model for Lupolen 1810H melt at 7 = 150 °C. v; = 2/q;. y = 0.001, 0.01, 0.03, 0.1, 0.3, 1,
1051,
123
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What about polymer solutions?

+Dilute solutions: chains do not interact Elastic Dumbbell Model
collisions with solvent molecules are

. W. Kuhn, 1934
modeled stochastically
«calculate y(R) by a statistical-mechanics
solution to the Langevin equation - Random force
(ensemble averaging) \ models random
collisions

Drag on beads
models friction

124
© Faith A. Morrison, Michigan Tech U.
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Elastic Dumbbell Model /\

Continuum modeling
Momentum balance on a control volume (Navier-Stokes Equation) \//

p(%+y'vyj=—vp+ﬂvzz+pg

=]

Inertia = surface + body

Mixed Continuum/Stochastic modeling (Langevin Equation)
Momentum balance on a discrete body (mass m, velocity u)

In a fluid continuum (velocity field v) Construct an
ensemble of
du 3 dumbbells and
m(Ej - —é’(g & VY)_ a4 seek the
probability of a
Inertia = drag + spring + random (Brownian) given ETE at ¢

125
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/\ Construct an
i ensemble of
Elastic Dumbbell Model 13\/ dumbbells and
Langevin Equation seek the
probability of a

d iven ETE at t

m(d”J = (u—R-Vv)-4KTB R+ 4 A
t

To solve, (see Larson pp41-45). Consider an ensemble of dumbbells and seek the
probability y that a dumbbell has an ETE R at a given time t. The equation for v is the
Smoluchowski equation:

2
W, 0 [ gy, WTB L, ATV
ot OR ¢ OR

We can calculate stress from: L ==

31]:/22‘/ [[[R- Ry (R)dR dRdR,

If we multiply the Smoluchowski equation by R-R and integrate over R space, we
obtain an expression for Z (i.e. the constitutive equation for this model)

126
© Faith A. Morrison, Michigan Tech U.
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Integration yields:

see Larson, Constitutive Equations for Polymer Melts,

Butterworths, 1988

Elastic dumbbell
model

I +/1£ = —NoY

Upper-Convected Maxwell Model!

(same as temporary
netrowk model)

Two different models
give the same
constitutive equation
(because stress only
depends on the
second moment of v,
not on details of y)

(\number of dumbbells/volume

G =wkT

é/ bead friction factor

A=—2
kTS

- 2Na2 from random walk

127

© Faith A. Morrison, Michigan Tech U.

Ip A7y = _UOZ

Advanced Constitutive Modeling — Molecular modeling

Elastic Dumbbell Model for Dilute
Polymer Solutions

see Larson, Constitutive

Butterworths, 1988

Equations for Polymer Melts,

Polymer contribution

Is = —NsY Solvent contribution
T=7T +7T Dumbbell Model
= = =S
P (Oldroyd B) See problem 9.49

I

128
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Rouse Model

*Multimodal bead-spring model
*Springs represent different sub-molecules
*Drag localized on beads (Stokes) N+1beads

N springs

=S

129
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see Larson, Constitutive Equations for

Rouse MOdel Polymer Melts, Butterworths, 1988

*Rouse wrote the Langevin equation for each spring. Each spring’s equation is
coupled to its neighbor springs which produces a matrix of equations to solve.

Langevin Equation

M(CZJ =—((u—R-Vv)-4kT R+ A4

*Rouse found a way to diagonalize the matrix of the averaged Langevin equations; this
allowed him to find a Smoluchowski equation for each transformed “mode” R, of the
Rouse chain -

*Each Smoluchowski equation gives a UCM for each of the modes R,

N Rouse Model for
= ZL G=vkT polymer solutions
=l c (multi-mode UCM)

ﬁ_ =
+Az. ==GL ' 16kTS sin’(i/2(N +1))

1 =

<

I

130
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Z. M d I see Larson, Constitutive Equations for W
imm vioae Polymer Melts, Butterworths, 1988
L]

*Multimodal bead-spring model
*Springs represent different sub-molecules
*Drag localized on beads (Stokes)

gelelnlleE=lill hydrodynamic interaction N+1beads
N springs

Rouse: solvent velocity near one bead is
unaffected by motion of other beads (no
hydrodynamic interaction)

Zimm: dominant
hydrodynamic
interaction)
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Advanced Constitutive Modeling — Molecular modeling
(Mewis and Wagner, Colloidal Suspension

What about suspensions?  Rrneology, Cambridge 2012)

uniform flow

—_— b Dilute solution
—_ Einstein relation

Stokes flow

‘ Increasing Concentrated
o ‘ complexity; suspensions
e 0 o o
— 09009 o 0° ‘{.
o —e 60 ® o % 0'0.
o_09,

= .‘. ! o‘o‘f. ‘300
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solve NS Stokesian dynamics
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Advanced Constitutive Modeling — Suspensions Brady and Bossis, Ann. Rev. Fluid

Mech, 20 111 1988
Wagner and Brady, Phys. Today

Stokesian Dynamics 2009, p27

Langevin Equation for Dumbbells

m(%j =~((u—R-Vy)-4kTS’R+ 4
Inertia = drag + spring + random (Brownian)

Another Langevin Equation
Stokesian Dynamics for Concentrated Suspensions

ﬁ-d—Q:F +F +F

d £ = hydrodynamic ' = particle ' = Brownian

Hydrodynamic = everything the suspending fluid is doing (including drag)
Particle = interparticle forces, gravity (including spring forces)
Brownian = random thermal events
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Advanced Constitutive Modeling —
Suspensions

g

38
©)

Stokesian Dynamics

Brady and Bossis, Ann. Rev.
Fluid Mech, 20 111 1988

Spanning clusters
increase viscosity

@)

Figure 14 Snapshots of i us particle

frame, no spanning cluster is present and the viscosity is relatively low.

for the sheared suspension of
Figure 13. The sequence (from top to bottom) corresponds in time to that indicated by the
arrows in Figure 13. These arrows correspond to the maxima and minima of the viscosity
fluctuations. Both the top and bottom frames show the presence of T—a g
connected path from one wall to the other—and give rise to large viscosities. In the middle

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Molecular modeling

Summary

Molecular models may lead to familiar constitutive equations %www

*Rubber-elasticity theory = Finite-strain Hooke’s law model %
*Green-Tobolsky temporary network theory = Lodge equation (UCM)

*Reptation theory = K-BKZ type equation
+Elastic dumbbell model for polymer solutions = Oldroyd B equation /\R
Model parameters have greater meaning when connected to a \y
molecular model > 0%%!
G = vkT % e e
— o:d'fc
*G;, A; specified by model
Molecular models are essential to narrowing down As always, the
the choices available in the continuum-based proof is inthe  see
models (e.g. K-BKZ, Rivlin-Sawyers, etc.) prediction. ’e':;f‘(’:’;; ;

Modeling may lead directly to information sought
(without ever calculating the stress tensor)
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Advanced Constitutive Modeling — Molecular modeling

Summary

Molecular models may lead to familiar constitutive equations %

*Rubber-elasticity theory = Finite-strain Hooke’s law model

[ *Green-Tobolsky temporary network theory = Lodge equation (UCM) ]
*Reptation theory = K-BKZ type equation /\
[ Elastic dumbbell model for polymer solutions = Oldroyd B equation (UCM] £ \y
=S
. - 050 o
Caution: correct stress predictions do not — 2252

imply that the molecular model is correct

Stress is proportional to the second moment of ¥(R), but
different functions may have the same second moments.
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Advanced Constitutive Modeling — Molecular modeling

Summary

.JMW

Materials Discussed

*Elastic solids

sLinear polymer melts with affine motion (temporary network)
sLinear polymer melts with anisotropic drag /\
sLinear polymer melts with various types of non-affine motion R
*Chain slip \V
*Reptation = 03e%!
L0 60 @4
*Branched melts (pom-pom) — .:‘g;;

*Polymer solutions
*Suspensions

Resources
R. G. Larson, Constitutive Equations for Polymer Melts
R. G. Larson, The Structure and Rheology of Complex Fljuids
J. Mewis and N. Wagner, Colloidal Suspension Rheology
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Done with Advanced Constitutive Models

Chapter 9: Advanced Constitutive Models

Let’'s move on
to Rheometry

dddrrced Canst Modeling W14 '
@ Faith A Momison, Michigan Tech U.

, second half Molecular
Chapter 9: Advanced Comstitutive Models ‘

Al MichiganTech
4650
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Chapter 10: Rheometry

!ﬂ Michigan Tech

Capillary Rheometer
e e CM4650
e region Polymer Rheology

L T
£ g

{
1 1 uNnEnsYAN‘nmn ;
D ,,,,,,,,,,,, ' Rheolo
i

exit region

polymer melt
Teservoir
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