Review:

We:

- Defined rheology
- Contrasted with Newtonian and non-Newtonian behavior
- Saw demonstrations (film)

Key to deformation and flow is the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Newtonian fluids: $\left\{\begin{array}{l}\bullet \text { Linear } \\ \bullet \\ \bullet \\ \boldsymbol{l} \text { Instantaneous }\end{array}\right.$
Non-Newtonian fluids:

- Non-linear
- Non-instantaneous
- $\underline{\underline{\tau}}(t)=$? (missing piece)

Key to deformation and flow is the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Newtonian fluids: $\left\{\begin{array}{l}\bullet \\ \bullet \\ \text { Linear } \\ \text { Instantaneous }\end{array}\right.$
We're going to be trying) $=-\mu \dot{\underline{\dot{\gamma}}}(t)$
to identify the constitutive equation $\underline{\underline{\tau}}(t)$ for nonNewtonian fluids.
momen HIST@RY

- Non-linear
- Non-instantaneous
- $\underline{\underline{\tau}}(t)=$? (missing piece)

Key to deformation and flow is the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Key to deformation and flow is the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

> - Linear

> Newtonian fluids: \quad - Instantaneous
> We're going to be trying $)=-\mu \dot{\underline{\dot{\gamma}}}(t)$
> to identify the constitutive equation $\underline{\underline{\tau}}(t)$ for nonNewtonian fluids.

We're going to need to calculate how different guesses affect the predicted behavior.

- Non-linear
- Non-instantaneous
- $\underline{\underline{\underline{\tau}}}(t)=$?

We need to understand and be able to manipulate this mathematical notation.

Chapter 2: Mathematics Review

1. Vector review Michigan Tech
2. Einstein notation
3. Tensors

Professor Faith A. Morrison
Department of Chemical Engineering
Michigan Technological University

Chapter 2: Mathematics Review

1. Scalar - a mathematical entity that has magnitude only
e.g.: temperature T
speed v
time t
density r

- scalars may be constant or may be variable

Laws of Algebra for		
Scalars:	yes commutative $a b=b a$ yes associative $a(b c)=(a b) c$ yes distributive $a(b+c)=a b+a c$	

© Faith A. Morrison, Michigan Tech U.

Mathematics Review
Polymer Rheology
2. Vector - a mathematical entity that has magnitude and direction
e.g.: force on a surface \underline{f} velocity \underline{v}

- vectors may be constant or may be variable

Definitions

magnitude of a vector - a scalar associated with a vector

$$
|\underline{v}|=v \quad|\underline{f}|=f
$$

unit vector - a vector of unit length

$$
\frac{\underline{v}}{|\underline{v}|}=\hat{v} \underbrace{}_{\begin{array}{l}
\text { a unit vector in the } \\
\text { direction of } \underline{v}
\end{array}}
$$

This notation $(\underline{v}, \hat{v}, \underline{f}$) is called Gibbs notation.

```
Mathematics Review
```


Laws of Algebra for
 Vectors:

1. Addition

2. Subtraction

Laws of Algebra for Vectors (continued):
3. Multiplication by scalar $\alpha \underline{v}$

$$
\begin{array}{lc}
\text { yes commutative } & \alpha \underline{v}=\underline{v} \alpha \\
\text { yes associative } & \alpha(\beta \underline{v})=(\alpha \beta) \underline{v}=\alpha \beta \underline{v} \\
\text { yes distributive } & \alpha(\underline{v}+\underline{w})=\alpha \underline{v}+\alpha \underline{w}
\end{array}
$$

4. Multiplication of vector by vector

4a. scalar (dot) (inner) product

$$
\underline{v} \cdot \underline{w}=v w \cos \theta
$$

Note: we can find magnitude with dot product

$$
\begin{aligned}
& \underline{v} \cdot \underline{v}=v v \cos 0=v^{2} \\
& v=|\underline{v}|=\sqrt{\underline{v} \cdot \underline{v}}
\end{aligned}
$$

Laws of Algebra for Vectors (continued):

4a. scalar (dot) (inner) product (con't)

$$
\begin{array}{lc}
\text { yes commutative } & \underline{v} \cdot \underline{w}=\underline{w} \cdot \underline{v} \\
\text { NO associative } & \underline{V} \cdot \underline{w} \cdot \underline{Z} \\
\text { yes distributive } & \underline{Z} \cdot(\underline{v}+\underline{w})=\underline{Z} \cdot \underline{v}+\underline{z} \cdot \underline{w}
\end{array}
$$

4b. vector (cross) (outer) product

$$
\underline{v} \times \underline{w}=v w \sin \theta \hat{e}
$$

\hat{e} is a unit vector perpendicular to both \underline{v} and \underline{w} following the right-hand rule

Laws of Algebra for Vectors (continued):
4b. vector (cross) (outer) product (con't)

$$
\begin{aligned}
& \text { NO commutative } \quad \underline{v} \times \underline{w} \neq \underline{w} \times \underline{v} \\
& \text { NO associative } \underline{v} \times \underline{w} \times \underline{z} \neq(\underline{v} \times \underline{w}) \times \underline{z} \neq \underline{v} \times(\underline{w} \times \underline{z}) \\
& \text { yes distributive } \quad \underline{z} \times(\underline{v}+\underline{w})=(\underline{z} \times \underline{v})+(\underline{z} \times \underline{w})
\end{aligned}
$$

Coordinate Systems

-Allow us to make actual calculations with vectors

Rule: any three vectors that are non-zero and linearly independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if a, b, and g can be found such that:

$$
\begin{aligned}
& \alpha \underline{a}+\beta \underline{b}+\gamma \underline{c}=\underline{0} \\
& \text { for } \quad \alpha, \beta, \gamma \neq 0
\end{aligned}
$$

If a, β, and γ are found to be zero, the vectors are linearly independent.

How can we do actual calculations with vectors?

Rule: any vector may be expressed as the linear combination of three, non-zero, non-coplanar basis vectors

Trial calculation: dot product of two vectors

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right) \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right) \\
& =a_{1} \hat{e}_{1} \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right)+ \\
& a_{2} \hat{e}_{2} \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right)+ \\
& a_{3} \hat{e}_{3} \cdot\left(b_{1} \hat{e}_{2}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right) \\
& =a_{1} \hat{e}_{1} \cdot b_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} \cdot b_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} \cdot b_{3} \hat{e}_{3}+ \\
& a_{2} \hat{e}_{2} \cdot b_{1} \hat{e}_{1}+a_{2} \hat{e}_{2} \cdot b_{2} \hat{e}_{2}+a_{2} \hat{e}_{2} \cdot b_{3} \hat{e}_{3}+ \\
& a_{3} \hat{e}_{3} \cdot b_{1} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{3} \hat{e}_{3}
\end{aligned}
$$

If we choose the basis to be orthonormal - mutually perpendicular and of unit length - then we can simplify.

If we choose the basis to be orthonormal - mutually perpendicular and of unit length, then we can simplify.

$$
\begin{gathered}
\hat{e}_{1} \cdot \hat{e}_{1}=1 \\
\hat{e}_{1} \cdot \hat{e}_{2}=0 \\
\hat{e}_{1} \cdot \hat{e}_{3}=0 \\
\cdots \\
\underline{a} \cdot \underline{b}=a_{1} \hat{e}_{1} \cdot b_{1} \hat{e}_{2}+a_{1} \hat{e}_{1} \cdot b_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} \cdot b_{3} \hat{e}_{3}+ \\
a_{2} \hat{e}_{2} \cdot b_{\hat{e}} \hat{e}_{1}+a_{2} \hat{e}_{2} \cdot b_{2} \hat{e}_{2}+a_{2} \hat{e}_{3} \cdot b_{3} \hat{e}_{3}+ \\
a_{3} \hat{e}_{3} \cdot b_{1} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{3} \hat{e}_{3} \\
=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{gathered}
$$

We can generalize this operation with a technique called Einstein notation.

Einstein Notation

a system of notation for vectors and tensors that allows for the calculation of results in Cartesian coordinate systems.

$$
\begin{aligned}
& \underline{a}=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
& =\sum_{j=1}^{3} a_{j} \hat{e}_{j} \\
& =a_{j} \hat{e}_{j}=a_{m} \hat{e}_{m} \begin{array}{l}
\text { chis notation } \\
\text { called Einstein } \\
\text { notation. }
\end{array}
\end{aligned}
$$

-the initial choice of subscript letter is arbitrary
-the presence of a pair of like subscripts implies a missing summation sign

Einstein Notation (con't)
The result of the dot products of basis vectors can be summarized by the Kronecker delta function

$$
\begin{aligned}
& \hat{e}_{1} \cdot \hat{e}_{1}=1 \\
& \hat{e}_{1} \cdot \hat{e}_{2}=0 \\
& \hat{e}_{1} \cdot \hat{e}_{3}=0 \\
& \cdots
\end{aligned} \quad \underbrace{\hat{e}_{i} \cdot \hat{e}_{p}=\delta_{i p}= \begin{cases}1 & i=p \\
0 & i \neq p\end{cases} }_{\text {Kronecker delta }}
$$

3. Tensor - the indeterminate vector product of two (or more) vectors
e.g.: stress $\underline{\underline{\tau}}$ velocity gradient $\underline{\underline{\gamma}}$

- tensors may be constant or may be variable

Definitions

dyad or dyadic product - a tensor written explicitly as the indeterminate vector product of two vectors

	$\underline{\underline{a}} \underline{d}$	dyad This notation
(a) $\underline{d}, \underline{A})$ is also part of $\operatorname{Gib} b s$ notation.	$\underline{\underline{A}}$of a tensor	

Laws of Algebra for Indeterminate

 Product of Vectors:$$
\begin{array}{lc}
\text { NO commutative } & \underline{a} \underline{v} \neq \underline{v} \underline{a} \\
\text { yes associative } & \underline{b}(\underline{a} \underline{v})=(\underline{b} \underline{a}) \underline{v}=\underline{b} \underline{a} \underline{v} \\
\text { yes distributive } & \underline{a}(\underline{v}+\underline{w})=\underline{a} \underline{v}+\underline{a} \underline{w}
\end{array}
$$

How can we represent tensors with respect to a chosen coordinate system?
$\underline{a} \underline{m}=\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right)\left(m_{1} \hat{e}_{1}+m_{2} \hat{e}_{2}+m_{3} \hat{e}_{3}\right)$
$=a_{1} \hat{e}_{1} m_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} m_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} m_{3} \hat{e}_{3}+$
$a_{2} \hat{e}_{2} m_{1} \hat{e}_{1}+a_{2} \hat{e}_{2} m_{2} \hat{e}_{2}+a_{2} \hat{e}_{2} m_{3} \hat{e}_{3}+$
$a_{3} \hat{e}_{3} m_{1} \hat{e}_{1}+a_{3} \hat{e}_{3} m_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} m_{3} \hat{e}_{3}$
$=\sum_{k=1}^{3} \sum_{w=1}^{3} a_{k} \hat{e}_{k} m_{w} \hat{e}_{w}$
$=\sum_{k=1}^{3} \sum_{w=1}^{3} a_{k} m_{w} \hat{e}_{k} \hat{e}_{w}$
Any tensor may be written as the sum of 9 dyadic products of basis vectors

Mathematics Review

What about $\underline{\underline{A}}$? Same.

$$
\underline{\underline{A}}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j} \hat{e}_{i} \hat{e}_{j}
$$

Einstein notation for tensors: drop the summation sign; every double index implies a summation sign has been dropped.

How can we use Einstein Notation to calculate dot products between vectors and tensors?

It's the same as between vectors.

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}= \\
& \underline{a} \cdot \underline{u} \underline{v}= \\
& \underline{b} \cdot \underline{\underline{A}}=
\end{aligned}
$$

Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian coordinate system as the sums of coefficients multiplying basis vectors - each separate summation has a different index
2. Drop the summation signs
3. Dot products between basis vectors result in the Kronecker delta function because the Cartesian system is orthonormal.

Note:

-In Einstein notation, the presence of repeated indices implies a missing summation sign
-The choice of initial index (i, m, p, etc.) is arbitrary - it merely indicates which indices change together
3. Tensor - (continued)

Definitions

Scalar product of two tensors

$$
\underline{\underline{A}}: \underline{\underline{M}}=A_{i p} \hat{e}_{i} \hat{e}_{p}: M_{k m} \hat{e}_{k} \hat{e}_{m}
$$

$$
\left.\begin{array}{l}
=A_{i p} M_{k m} \overbrace{\hat{e}_{i}}^{\hat{e}_{p}} \underbrace{\hat{e}_{k}} \hat{e}_{m} \\
=A_{i p} M_{k m} \\
\left.=A_{i p} M_{k m} \quad \begin{array}{l}
\left.\hat{e}_{p} \cdot \hat{e}_{k}\right)
\end{array} \hat{e}_{i} \cdot \hat{e}_{m}\right) \\
\text { carry out the dot } \\
\text { products indicated }
\end{array}\right)
$$

But, what is a tensor really?

A tensor is a handy representation of a Linear Vector Function

$$
\text { scalar function: } \quad y=f(x)=x^{2}+2 x+3
$$

a mapping of values of x onto values of y
vector function: $\quad \underline{w}=f(\underline{v})$
a mapping of vectors of \underline{v} into vectors \underline{w}

How do we express a vector function?

What is a linear function?
Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the following two properties:

$$
\begin{aligned}
& f(\lambda x)=\lambda f(x) \\
& f(x+w)=f(x)+f(w)
\end{aligned}
$$

Multiplying vectors and tensors is a convenient way of representing the actions of a linear vector function (as we will now show).

Tensors are Linear Vector Functions

Let $f(\underline{a})=\underline{b}$ be a linear vector function.
\qquad We can write \underline{a} in Cartesian coordinates.

$$
\begin{aligned}
& \underline{a}=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
& f(\underline{a})=f\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right)=\underline{b}
\end{aligned}
$$

Using the linear properties of f, we can distribute the function action:

$$
f(\underline{a})=a_{1} f\left(\hat{e}_{1}\right)+a_{2} f\left(\hat{e}_{2}\right)+a_{3} f\left(\hat{e}_{3}\right)=\underline{b}
$$

These results are just vectors, we will name them $\underline{v}, \underline{w}$, and \underline{m}.

Tensors are Linear Vector Functions (continued)

$$
\begin{aligned}
& f(\underline{a})=a_{1} \underbrace{f\left(\hat{e}_{1}\right)}_{\underline{v}}+a_{2} \underbrace{f\left(\hat{e}_{2}\right)}_{\underline{w}}+\underbrace{a_{3} f\left(\hat{e}_{3}\right)}_{\underline{m}}=\underline{b} \\
& f(\underline{a})=a_{1} \underline{v}+a_{2} \underline{w}+a_{3} \underline{m}=\underline{b}
\end{aligned}
$$

Now we note that the coefficients a_{i} may be written as,

$$
a_{1}=\underline{a} \cdot \hat{e}_{1} \quad a_{2}=\underline{a} \cdot \hat{e}_{2} \quad a_{3}=\underline{a} \cdot \hat{e}_{3}
$$

Substituting,

$$
f(\underline{a})=\underline{a} \cdot \hat{e}_{1} \underline{v}+\underline{a} \cdot \hat{e}_{2} \underline{w}+\underline{a} \cdot \hat{e}_{3} \underline{m}=\underline{b}
$$

The indeterminate vector product has appeared!

Using the distributive law, we can factor out the dot product with \underline{a} :

$$
f(\underline{a})=\underline{a} \cdot(\underbrace{\left(\hat{e}_{1} \underline{v}+\hat{e}_{2} \underline{w}+\hat{e}_{3} \underline{m}\right)}=\underline{b}
$$

This is just a tensor (the sum of dyadic $\quad\left(\hat{e}_{1} \underline{v}+\hat{e}_{2} \underline{w}+\hat{e}_{3} \underline{m}\right) \equiv \underline{\underline{M}}$ products of vectors)

$$
f(\underline{a})=\underline{a} \cdot \underline{\underline{M}}=\underline{b}
$$

3. Tensor - (continued)

More Definitions
Identity Tensor

$$
\begin{aligned}
\underline{I} & =\hat{e}_{i} \hat{e}_{i}=\hat{e}_{1} \hat{e}_{1}+\hat{e}_{2} \hat{e}_{2}+\hat{e}_{3} \hat{e}_{3} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)_{123}
\end{aligned}
$$

$$
\begin{aligned}
\underline{\underline{A} \cdot} \cdot & =A_{i p} \hat{e}_{i} \hat{e}_{p} \cdot \hat{e}_{e} \hat{e}_{k} \\
& =A_{i} \hat{e}_{i} \delta_{p k} \hat{e}_{k} \\
& =A_{i k} \hat{e}_{i} e_{k} \\
& =\underline{\underline{A}}
\end{aligned}
$$

3. Tensor - (continued) More Definitions

Zero Tensor

$$
\underline{\underline{0}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)_{123}
$$

Magnitude of a Tensor

$$
|\underline{\underline{A}}| \equiv+\sqrt{\frac{\underline{\underline{A}}: \underline{\underline{A}}}{2}} \quad \begin{aligned}
& \text { Note that the book has a } \\
& \text { typo on this equation: the } \\
& \text { "" is under the square root. }
\end{aligned}
$$

$$
\underline{\underline{A}}: \underline{\underline{A}}=A_{i p} \hat{e}_{i} \hat{e}_{p}: A_{k m} \hat{e}_{k} \hat{e}_{m}
$$

$$
\begin{array}{ll}
=A_{i p} A_{k m}\left(\hat{e}_{p} \cdot \hat{e}_{k}\right)\left(\hat{e}_{i} \cdot \hat{e}_{m}\right) & \begin{array}{l}
\text { products } \\
\text { across the } \\
\text { diagonal }
\end{array} \\
=A_{m k} A_{k m} &
\end{array}
$$

3. Tensor - (continued)

More Definitions
Tensor Transpose

$$
{\underline{\underline{M^{\prime}}}}^{T}=\left(M_{i k} \hat{e}_{i} \hat{e}_{k}\right)^{T}=M_{i k} \hat{e}_{k} \hat{e}_{i} \quad \begin{aligned}
& \text { Exchange the } \\
& \text { coefficients across } \\
& \text { the diagonal }
\end{aligned}
$$

CAUTION:

$$
\begin{aligned}
(\underline{A} \cdot \underline{\underline{A}})^{T} & =\left(A_{i k} \hat{e}_{i} \hat{e}_{k} \cdot C_{p p} \hat{e}_{\hat{e}} \hat{e}_{j}\right)^{T}=\left(A_{i k} C_{p j} \hat{e}_{i} \hat{e}_{j} \delta_{k p}\right)^{T} \\
& =\left(A_{i p} C_{p j} \hat{e}_{\hat{e}} \hat{e}_{j}\right)^{T} \\
& =A_{i p} C_{p j} \hat{e}_{j} \hat{e}_{i}
\end{aligned}
$$

Mathematics Review

3. Tensor - (continued) More Definitions

Symmetric Tensor

$$
\begin{aligned}
& \underline{\underline{M}}=\underline{\underline{M}}^{T} \\
& M_{i k}=M_{k i}
\end{aligned}
$$

e.g.
$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)_{123}$

Antisymmetric Tensor

$$
\begin{aligned}
& \underline{M}=-\underline{M}^{T} \\
& M_{i k}=-M_{k i}
\end{aligned}
$$

e.g.
$\left(\begin{array}{ccc}0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0\end{array}\right)_{123}$
3. Tensor - (continued)

More Definitions

Tensor order
Scalars, vectors, and tensors may all be considered to be tensors (entities that exist independent of coordinate system). They are tensors of different orders, however. order $=$ degree of complexity
\(\left.\begin{array}{lll}scalars \& 0^{th} -order tensors \& 3^{0}

\hdashline vectors \& 1^{st} -order tensors \& 3^{1}

\hline tensors \& 2^{nd} -order tensors \& 3^{2-}

\begin{array}{l}higher-

order

tensors\end{array} \& 3^{rdd} -order tensors \& 3^{3-}\end{array}\right\}\)| Number of |
| :--- |
| coefficients |
| needed to |
| express the |
| tensor in 3D |
| space |

3. Tensor - (continued) More Definitions
 Tensor Invariants

Scalars that are associated with tensors; these are numbers that are independent of coordinate system.
vectors: $\quad|v|=v \quad$ The magnitude of a vector is a scalar associated with the vector It is independent of coordinate system, i.e. it is an invariant.
tensors: $\quad \underline{A} \quad$ There are three invariants associated with a second-order tensor.

37
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensor Invariants

$$
I_{\underline{\underline{A}}} \equiv \operatorname{trace} \underline{\underline{A}}=\operatorname{tr} \underline{\underline{A}}
$$

For the tensor written in Cartesian coordinates:

$$
\begin{gathered}
\operatorname{trace} \underline{\underline{A}}=A_{p p}=A_{11}+A_{22}+A_{33} \\
I I_{\underline{\underline{A}}} \equiv \operatorname{trace}(\underline{\underline{A}} \cdot \underline{\underline{A}})=\underline{\underline{A}}: \underline{\underline{A}}=A_{p k} A_{k p} \\
I I I_{\underline{\underline{A}}} \equiv \operatorname{trace}(\underline{\underline{A}} \cdot \underline{\underline{A}} \cdot \underline{\underline{A}})=A_{p j} A_{j h} A_{h p}
\end{gathered}
$$

Note: the definitions of invariants written in terms of coefficients are only valid when the tensor is written in Cartesian coordinates.

4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine rates of change (with respect to time, position)
-To carryout the differentiation with respect to a single variable, differentiate each coefficient individually.
-There is no change in order (vectors remain vectors, scalars remain scalars, etc.

$$
\frac{\partial \alpha}{\partial t} \quad \frac{\partial \underline{w}}{\partial t}=\left(\begin{array}{l}
\frac{\partial w_{1}}{\partial t} \\
\frac{\partial w_{2}}{\partial t} \\
\frac{\partial w_{3}}{\partial t}
\end{array}\right)_{123} \quad \frac{\partial B}{\partial t}=\left(\begin{array}{lll}
\frac{\partial B_{11}}{\partial t} & \frac{\partial B_{21}}{\partial t} & \frac{\partial B_{31}}{\partial t} \\
\frac{\partial B_{21}}{\partial t} & \frac{\partial B_{22}}{\partial t} & \frac{\partial B_{23}}{\partial t} \\
\frac{\partial B_{31}}{\partial t} & \frac{\partial B_{32}}{\partial t} & \frac{\partial B_{33}}{\partial t}
\end{array}\right)_{123}
$$

4. Differential Operations with Vectors, Tensors (continued)
-To carryout the differentiation with respect to 3D spatial variation, use the del (nabla) operator.
-This is a vector operator
-Del may be applied in three different ways
-Del may operate on scalars, vectors, or tensors

$$
\begin{gathered}
\begin{array}{r}
\text { This is written in } \\
\begin{array}{c}
\text { Cartesian } \\
\text { coordinates }
\end{array}
\end{array}\{\begin{array}{r}
\nabla \equiv \hat{e}_{1} \frac{\partial}{\partial x_{1}}+\hat{e}_{2} \frac{\partial}{\partial x_{2}}+\hat{e}_{3} \frac{\partial}{\partial x_{3}}
\end{array}=(\begin{array}{c}
\frac{\partial}{\frac{\partial}{\partial x_{1}}} \\
\frac{\partial}{\frac{\partial}{\partial x_{2}}} \sum_{\text {Einstein notation for del }}^{3} \hat{e}_{p} \frac{\partial}{\partial x_{p}}
\end{array} \underbrace{\hat{e}_{p} \frac{\partial}{\partial x_{p}}}
\end{gathered}
$$

4. Differential Operations with Vectors, Tensors (continued)

Gibbs
notation

\frac{\partial \beta}{\partial x_{2}}

\frac{\partial \beta}{\partial x_{3}}\end{array}\right)_{123}\)| This is written in |
| :--- |
| Cartesian |
| coordinates |

$\begin{array}{r}\text { Gradient of } \mathrm{a} \\ \text { scalar field }\end{array}=\hat{e}_{p} \frac{\partial \beta}{\partial x_{p}}$

The gradient of a scalar field is a vector
-gradient operation increases the order of the entity operated upon

41
© Faith A. Morrison, Michigan Tech U.

Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)
B. Vectors - gradient

$$
\begin{array}{rll}
\nabla \underline{w} \equiv & \hat{e}_{1} \frac{\partial}{\partial x_{1}} \underline{w}+\hat{e}_{2} \frac{\partial}{\partial x_{2}} \underline{w}+\hat{e}_{3} \frac{\partial}{\partial x_{3}} \underline{w} & \begin{array}{l}
\text { This is all written in } \\
\text { Cartesian } \\
\text { coordinates (basis } \\
\text { vectors are } \\
\text { constant) }
\end{array} \\
=\hat{e}_{1} \frac{\partial}{\partial x_{1}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \underline{e_{2}} \frac{\partial}{\partial x_{2}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \\
& +\hat{e}_{3} \frac{\partial}{\partial x_{3}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \hat{e}^{2}+\hat{e}_{1} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{1}}+\hat{e}_{1} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{1}}+\hat{e}_{1} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{1}}+\hat{e}_{2} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{2}}+ \\
\hat{e}_{2} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{2}}+\hat{e}_{2} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{2}}+\hat{e}_{3} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{3}}+\hat{e}_{3} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{3}}+\hat{e}_{3} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{3}}
\end{array}
$$

Mathematics Review

Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)

$$
\begin{aligned}
& \text { B. Vectors - gradient (continued) } \\
& \text { constants may appear } \\
& \text { on either side of the } \\
& \text { Gradient of a } \\
& \text { vector field } \\
& \text { differential operator } \\
& \text { The gradient of } \\
& \text { a vector field is a } \\
& \text { Einstein notation } \\
& \text { for gradient of a } \\
& \text { tensor }
\end{aligned}
$$

4. Differential Operations with Vectors, Tensors (continued)
C. Vectors - divergence
$\left.\begin{array}{r}\text { Divergence of a } \\ \text { vector field } \\ \nabla \cdot \underline{w}\end{array} \hat{e}_{1} \frac{\partial}{\partial x_{1}}+\hat{e}_{2} \frac{\partial}{\partial x_{2}}+\hat{e}_{3} \frac{\partial}{\partial x_{3}}\right) \cdot w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}$ $\begin{gathered}\text { Gibbs } \\ \text { notation }\end{gathered} \quad=\frac{\partial w_{1}}{\partial x_{1}}+\frac{\partial w_{2}}{\partial x_{2}}+\frac{\partial w_{3}}{\partial x_{3}}$
$=\sum_{i=1}^{3} \frac{\partial w_{i}}{\partial x_{i}}=\frac{\partial w_{i}}{\partial x_{i}}$

The Divergence of a vector field is a scalar

Einstein notation for divergence of a vector

Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence (continued)

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Csing Einstein } \\
\text { notation } \\
\text { constants may appear } \\
\text { differential operator }
\end{array}
\end{array} \begin{array}{l}
\text { This is all written in } \\
\text { Cartesian } \\
\text { coordinates (basis } \\
\text { vectors are } \\
\text { constant) }
\end{array} \\
& \qquad \begin{aligned}
\nabla \cdot \underline{w} & \equiv \hat{e}_{m} \frac{\partial}{\partial x_{m}} \cdot w_{j} \hat{e}_{j}=\frac{\partial w_{j}}{\partial x_{m}} \hat{e}_{m} \cdot \hat{e}_{j}=\frac{\partial w_{j}}{\partial x_{m}} \delta_{m j} \\
& =\frac{\partial w_{j}}{\partial x_{j}}
\end{aligned}
\end{aligned}
$$

-divergence operation decreases the order of the entity operated upon
4. Differential Operations with Vectors, Tensors (continued)
D. Vectors - Laplacian

Using
Einstein

$$
\nabla \cdot \nabla \underline{w} \equiv \hat{e}_{m} \frac{\partial}{\partial x_{m}} \cdot \hat{e}_{p} \frac{\partial}{\partial x_{p}} w_{j} \hat{e}_{j}=\frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{p}} w_{j}\left(\hat{e}_{m} \cdot \hat{e}_{p}\right) \hat{e}_{j}
$$

$$
=\frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{p}} w_{j}\left(\delta_{m p}\right) \hat{e}_{j}
$$

$$
=\frac{\partial}{\partial x_{p}} \frac{\partial}{\partial x_{p}} w_{j} \hat{e}_{j}
$$

The Laplacian of a vector field is a

Einstein vector notation

$$
=\left(\begin{array}{l}
\frac{\partial^{2} w_{1}}{\partial x_{1}}+\frac{\partial^{2} w_{1}}{\partial x_{2}}+\frac{\partial^{2} w_{1}}{\partial x_{3}} \\
\frac{\partial^{2} w_{2}}{\partial x_{1}}+\frac{\partial^{2} w_{2}}{\partial x_{2}}+\frac{\partial^{2} w_{2}}{\partial x_{3}} \\
\left.\frac{\partial^{2} w_{3}}{\partial x_{1}}+\frac{\partial^{2} w_{3}}{\partial x_{2}}+\frac{\partial^{2} w_{3}}{\partial x_{3}}\right)_{123} \text { column } \begin{array}{c}
\text { colum } \\
\text { vector } \\
\text { notation }
\end{array} \\
\hline
\end{array}\right.
$$

Mathematics Review

Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
E. Scalar - divergence

(impossible; cannot decrease order of a scalar)
F. Scalar - Laplacian
$\nabla \cdot \nabla \alpha$
G. Tensor - gradient $\quad \nabla \underline{\underline{A}}$
H. Tensor - divergence
I. Tensor - Laplacian
$\nabla \cdot \underline{\underline{A}}$
$\nabla \cdot \nabla \underline{\underline{A}}$
5. Curvilinear Coordinates
Cylindrical

Mathematics Review Polymer Rheology
5. Curvilinear Coordinates

Cylindrical	\bar{r}, θ, z	$\hat{e}_{\bar{r}}, \hat{e}_{\theta}, \hat{e}_{z}$		
Spherical	r, θ, ϕ	$\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}$		See text
:---				
figures				
2.11 and				
2.12				

These coordinate systems are ortho-normal, but they are not constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.
5. Curvilinear Coordinates (continued)

$$
\begin{aligned}
& \nabla \psi=\left(\frac{\partial \psi}{\partial x} \hat{e}_{x}+\frac{\partial \psi}{\partial y} \hat{e}_{y}+\frac{\partial \psi}{\partial z} \hat{e}_{z}=\cos \theta \hat{e}_{r}-\sin \theta \hat{e}_{\theta} \quad \begin{array}{c}
\hat{e}_{y}=\sin \theta \hat{e}_{r}+\cos \theta \hat{e}_{\theta} \\
z=r \cos \theta \\
z=r \sin \theta \\
z=z \\
z=\tan ^{-1}\left(\frac{y}{x}\right) \\
z y^{2} \\
z
\end{array}\right. \\
& \frac{\partial \psi}{\partial x}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial x}+\frac{\partial \psi}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial \psi}{\partial r} \cos \theta+\frac{\partial \psi}{\partial \theta}\left(\frac{-\sin \theta}{r}\right) \\
& \frac{\partial \psi}{\partial y}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial y}+\frac{\partial \psi}{\partial z} \frac{\partial z}{\partial y}=\frac{\partial \psi}{\partial r} \sin \theta+\frac{\partial \psi}{\partial \theta}\left(\frac{\cos \theta}{r}\right)
\end{aligned}
$$

5. Curvilinear Coordinates (continued)

$$
\text { Result: } \quad \begin{aligned}
\nabla & =\left(\frac{\partial}{\partial x} \hat{e}_{x}+\frac{\partial}{\partial y} \hat{e}_{y}+\frac{\partial}{\partial z} \hat{e}_{z}\right) \\
& =\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{z} \frac{\partial}{\partial z}
\end{aligned}
$$

Now, proceed:
(We cannot use Einstein notation because these are not Cartesian coordinates)
$\nabla \cdot \underline{v}=\left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{z} \frac{\partial}{\partial z}\right) \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)$

$$
=\hat{e}_{r} \frac{\partial}{\partial r} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+
$$

$$
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+
$$

$$
\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)
$$

Mathematics Review Polymer Rheology
5. Curvilinear Coordinates (continued)

$$
\begin{array}{r}
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)
\end{array}
$$

$$
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot v_{r} \hat{e}_{r}=\hat{e}_{\theta} \cdot \frac{1}{r} \frac{\partial v_{r} \hat{e}_{r}}{\partial \theta}
$$

$$
=\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right)
$$

Mathematics Review

5. Curvilinear Coordinates (continued)

$$
\begin{aligned}
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot v_{r} \hat{e}_{r}= & \hat{e}_{\theta} \cdot \frac{1}{r} \frac{\partial v_{r} \hat{e}_{r}}{\partial \theta} \\
& =\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right) \\
& =\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \hat{e}_{\theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right)
\end{aligned}
$$

$$
=\frac{1}{r} v_{r}
$$

Curvilinear coordinate notation

Mathematics Review
5. Curvilinear Coordinates (continued)

Final result for divergence of a vector
in cylindrical coordinates:

$$
\begin{array}{r}
\nabla \cdot \underline{v}=\hat{e}_{r} \frac{\partial}{\partial r} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\left.\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}\right)+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right) \\
\nabla \cdot \underline{v}=\frac{\partial v_{r}}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r}+\frac{\partial v_{r}}{\partial z}
\end{array}
$$

5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)
-The basis vectors are ortho-normal
-The basis vectors are non-constant (vary with position)
-These systems are convenient when the flow system mimics the coordinate surfaces in curvilinear coordinate systems.
-We cannot use Einstein notation - must use Tables in Appendix C2 (pp464-468).

Curvilinear coordinate notation

Mathematics Review Polymer Rheology
6. Vector and Tensor Theorems and In Chapter 3 we review Newtonian fluid definitions mechanics using the vector/tensor vocabulary we have learned thus far. We just need a few more theorems to prepare us for those studies. These are presented without proof.

Gauss Divergence Theorem

Gibbs
notation

$$
\iiint_{V} \nabla \cdot \underline{b} d V=\iint_{S} \hat{n} \cdot \underline{b} d S{ }^{\begin{array}{c}
\text { directed unit } \\
\text { normal }
\end{array}}
$$

This theorem establishes the utility of the divergence operation. The integral of the divergence of a vector field over a volume is equal to the net outward flow of that property through the bounding surface.

Mathematics Review

Polymer Rheology
6. Vector and Tensor Theorems (continued)
Leibnitz Rule for differentiating integrals

$$
\begin{aligned}
J & =\int_{\alpha(t)}^{\beta(t)} f(x, t) d x \\
\frac{d J}{d t} & =\frac{d}{d t} \int_{\alpha(t)}^{\beta(t)} f(x, t) d x \\
& =\int_{\alpha(t)}^{\beta(t)} \frac{\partial f(x, t)}{\partial t} d x+\frac{d \beta}{d t} f(\beta, t)-\frac{d \alpha}{d t} f(\alpha, t)
\end{aligned}
$$

Mathematics Review
Polymer Rheology
6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals
$J=\iiint_{V(t)} f(x, y, z, t) d V$

$\frac{d J}{d t}$	$=\frac{d}{d t} \iiint_{V(t)} f(x, y, z, t) d V$
	$=\iiint_{V(t)} \frac{\partial f(x, y, z, t)}{\partial t} d V+\iint_{S(t)} f\left(\underline{V}_{\text {surface }} \cdot \hat{n}\right) d S$
velocity of the surface element $d S$	

©Faith A. Morrison, Michigan Tech U.
6. Vector and Tensor Theorems (continued)

Substantial Derivative Consider a function $f(x, y, z, t)$
$\begin{array}{r}\text { true for any } \\ \text { path: }\end{array} d f \equiv\left(\frac{\partial f}{\partial x}\right)_{y z t} d x+\left(\frac{\partial f}{\partial y}\right)_{x z t} d y+\left(\frac{\partial f}{\partial z}\right)_{x y t} d z+\left(\frac{\partial f}{\partial t}\right)_{x y z} d t$
choose
special path

Notation Summary:

Gibbs-no reference to coordinate system ($\underline{a}, \underline{A}, \nabla \rho, \nabla \cdot \underline{a}$)
Einstein-references to Cartesian coordinate system
(ortho-normal, constant) ($a_{i} \hat{e}_{i}, A_{p k} \hat{e}_{p} \hat{e}_{k}$)
Matrix-uses column or row vectors for vectors and 3×3 matrix of coefficients for tensors

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)_{123},\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)_{123}
$$

Curvilinear coordinate-references to curvilinear coordinate system (ortho-normal, vary with

$$
\text { position) }\left(\begin{array}{l}
a_{r} \\
a_{\theta} \\
a_{z}
\end{array}\right)_{r \theta z},\left(\begin{array}{lll}
A_{r r} & A_{r \theta} & A_{r z} \\
A_{\theta r} & A_{\theta \theta} & A_{\theta z} \\
A_{z r} & A_{z \theta} & A_{z z}
\end{array}\right)_{r \theta z}
$$

Done with Math
background.

Let's use it with Newtonian fluids

Chapter 3: Newtonian Fluids

CM4650
Polymer Rheology
Michigan Tech

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}
$$

