What exactly do we observe when we subject non-Newtonian fluids to deformation?

Professor Faith A. Morrison
Department of Chemical Engineering
Michigan Technological University

Rheology uses a sort of an ASTM or ISO-like technical standards approach to organize observations:

1. Choose a standard flow (shear or elongation)
2. Choose a set of flow kinematics (the speed and time-profile of the specific test)
3. Measure specified quantities (related to stress or deformation)
4. Report a standardized reported function (material function)
What exactly do we observe when we subject non-Newtonian fluids to deformation?

<table>
<thead>
<tr>
<th>Standard flow</th>
<th>(\dot{\gamma}(t) =)</th>
<th>Standard kinematics</th>
<th>What do we observe?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear</td>
<td>(\begin{pmatrix} \dot{\gamma}(t) x_2 \ 0 \ 0 \end{pmatrix})</td>
<td></td>
<td>(\begin{array}{c} \text{Shear} \ \text{Material Functions} \end{array})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma_{ij})</td>
<td>(\begin{array}{c} \text{a) Steady} \ \text{b) Start-up} \ \text{c) Cessation} \ \text{d) Step-strain} \ \text{e) SAOS}^* \end{array})</td>
</tr>
</tbody>
</table>

\((*SAOS = \text{small-amplitude oscillatory shear}) \)

<table>
<thead>
<tr>
<th>Standard flow</th>
<th>(\dot{\epsilon}(t) =)</th>
<th>Standard kinematics</th>
<th>What do we observe?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elongation</td>
<td>(\begin{pmatrix} \dot{\epsilon}(t) x_1 \ \frac{1}{2} \dot{\epsilon}(t) x_2 \ \frac{1}{2} \dot{\epsilon}(t) x_3 \end{pmatrix})</td>
<td></td>
<td>(\begin{array}{c} \text{Elongation} \ \text{Material Functions} \end{array})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\ddot{\gamma}_{ij})</td>
<td>(\begin{array}{c} \text{a) Steady} \ \text{b) Start-up} \end{array})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma_{ij})</td>
<td>(etc.)</td>
</tr>
</tbody>
</table>

\(\sigma_{ij} = \frac{\partial \ddot{\gamma}_{ij}}{\partial \dot{\gamma}_{ij}} \)
What exactly do we observe when we subject non-Newtonian fluids to deformation?

Material Functions

Summarized on “recipe cards”

- Vocabulary (framework) of material comparison
- Used to characterize a material as Newtonian vs. non-Newtonian

Newtonian

- \(\eta = \mu = \text{constant} \)
- \(\Psi_1 = \Psi_2 = 0 \)
- \(G' = 0 \)
- etc.

Non-Newtonian

- \(\eta = \eta' \)
- \(\Psi_1 \neq 0; \Psi_2 \neq 0 \)
- \(G', G'' \neq 0 \)
- etc.

• Within non-Newtonian fluids, used to further categorize materials
 - Cross-linked rubber: \(G' = G_0 = \text{constant} \)
 - Entangled melt: characteristic \(G'(\omega), G''(\omega) \) shapes
 - Shear thinning, shear thickening melt: characteristic \(\eta' \)
 - Branched polymer: characteristic \(G'(\omega), G''(\omega) \) shapes
Part II-A. Continuum versus molecular modeling

Shear Material Functions

\[\gamma \equiv \begin{pmatrix} \dot{\gamma}(t)x_1 \\ \frac{1}{2}\dot{\gamma}(t)x_2 \\ \frac{1}{3}\dot{\gamma}(t)x_3 \end{pmatrix} \]

a) Steady

b) Start-up

c) Cessation

Elongation Material Functions

\[\gamma \equiv \begin{pmatrix} \dot{\gamma}(t)x_1 \\ \frac{1}{2}\dot{\gamma}(t)x_2 \\ \frac{2}{3}\dot{\gamma}(t)x_3 \end{pmatrix} \]

da) Steady

e) SAOS

f) Creep

(c currently unobservable)

(exists, but easily converted to SAOS so is redundant)

(exists)
Steady Shear Flow Material Functions

Imposed Kinematics:

\[
y(t) = \begin{pmatrix}
\dot{\gamma}(t) \chi_{2} \\
0 \\
0
\end{pmatrix}_{123}
\]

\[\dot{\gamma}(t) = \dot{\gamma}_0 = \text{constant}\]

Material Stress Response:

\[\bar{\tau}_{21}(t)\]

\[N_1(t)\]

Material Functions:

Viscosity \[
\eta(\dot{\gamma}_0) = \frac{\bar{\tau}_{21}}{\dot{\gamma}_0}
\]

First normal-stress coefficient \[
\psi_1(\dot{\gamma}_0) = \frac{\bar{\tau}_{11} - \bar{\tau}_{22}}{\dot{\gamma}_0}
\]

Second normal-stress coefficient \[
\psi_2(\dot{\gamma}_0) = \frac{\bar{\tau}_{22} - \bar{\tau}_{33}}{\dot{\gamma}_0}
\]

Start-up of Steady Shear Flow Material Functions

Imposed Kinematics:

\[
y(t) = \begin{pmatrix}
\dot{\gamma}(t) \chi_{2} \\
0 \\
0
\end{pmatrix}_{123}
\]

\[\dot{\gamma}(t) = \begin{cases}
0 & t < 0 \\
\dot{\gamma}_0 & t \geq 0
\end{cases}\]

Material Stress Response:

\[\bar{\tau}_{21}(t)\]

\[N_1(t)\]

Material Functions:

Shear stress growth function \[
\eta^+(t, \dot{\gamma}_0) = \frac{\bar{\tau}_{21}(t)}{\dot{\gamma}_0}
\]

First normal-stress growth coefficient \[
\psi_1^+(t, \dot{\gamma}_0) = \frac{\bar{\tau}_{11} - \bar{\tau}_{22}}{\dot{\gamma}_0}
\]

Second normal-stress growth coefficient \[
\psi_2^+(t, \dot{\gamma}_0) = \frac{\bar{\tau}_{22} - \bar{\tau}_{33}}{\dot{\gamma}_0}
\]
Cessation of Steady Shear Flow Material Functions

Imposed Kinematics:
\[
y(t) = \begin{pmatrix} \dot{\gamma}(t)x_2 \\ 0 \\ 0 \end{pmatrix}
\]
\[
\dot{\gamma}(t) = \begin{cases} \dot{\gamma}_0 & t < 0 \\ 0 & t \geq 0 \end{cases}
\]
\[
\gamma(t, 0) = \begin{cases} \gamma_0 & t < 0 \\ 0 & t \geq 0 \end{cases}
\]

Material Stress Response:
\[
\mathbf{F}_1(t) = \begin{pmatrix} \tilde{F}_{11}(t) \\ \tilde{F}_{12} \\ \tilde{F}_{13} \end{pmatrix}
\]
\[
N_1(t) = \begin{pmatrix} N_{11} \\ N_{12} \\ N_{13} \end{pmatrix}
\]

Material Functions:
- Shear stress decay function:
 \[
 \eta(t, \dot{\gamma}_0) = \frac{\tilde{F}_{21}(t)}{\gamma_0}
 \]
- First normal-stress decay coefficient:
 \[
 \Psi_1(t, \dot{\gamma}_0) = \frac{\tilde{F}_{11} - \tilde{F}_{22}}{\gamma_0}
 \]
- Second normal-stress decay coefficient:
 \[
 \Psi_2(t, \dot{\gamma}_0) = \frac{\tilde{F}_{22} - \tilde{F}_{33}}{\gamma_0}
 \]

Step Strain Shear Flow Material Functions

Imposed Kinematics:
\[
y(t) = \begin{pmatrix} \dot{\gamma}(t)x_2 \\ 0 \\ 0 \end{pmatrix}
\]
\[
\dot{\gamma}(t) = \begin{cases} \dot{\gamma}_0 & t < \varepsilon \\ 0 & t \geq \varepsilon \end{cases}
\]
\[
\gamma(t, 0) = \begin{cases} \gamma_0 & t < \varepsilon \\ 0 & t \geq \varepsilon \end{cases}
\]

Material Stress Response:
\[
\mathbf{F}_1(t) = \begin{pmatrix} \tilde{F}_{11}(t) \\ \tilde{F}_{12} \\ \tilde{F}_{13} \end{pmatrix}
\]
\[
N_1(t) = \begin{pmatrix} N_{11} \\ N_{12} \\ N_{13} \end{pmatrix}
\]

Material Functions:
- Relaxation modulus:
 \[
 G(t, \gamma_0) = \frac{\tilde{F}_{21}(t, \gamma_0)}{\gamma_0}
 \]
- First normal-stress relaxation modulus:
 \[
 G_{\Psi_1}(t, \gamma_0) = \frac{\tilde{F}_{11} - \tilde{F}_{22}}{\gamma_0}
 \]
- Second normal-stress relaxation modulus:
 \[
 G_{\Psi_2}(t, \gamma_0) = \frac{\tilde{F}_{22} - \tilde{F}_{33}}{\gamma_0}
 \]
Small-Amplitude Oscillatory Shear Material Functions

Imposed Kinematics:

\[
y(t) = \begin{pmatrix} \xi(t) \nu_2 \\ 0 \\ 0 \end{pmatrix}_{123}
\]

\[
\dot{\xi}(t) = \dot{\gamma}_0 \cos(\omega t)
\]

\[
\dot{\gamma}_0 = \frac{\dot{\gamma}_0}{\omega}
\]

Material Stress Response:

\[
\delta = \text{phase difference between stress and strain waves}
\]

\[
\gamma_{21}(t) = \gamma_{21}(0, t) = \gamma_{21}(0, t) = \gamma_{21}(0, t)
\]

\[
N_1(t) = N_2(t) = 0 \quad \text{(linear viscoelastic regime)}
\]

Material Functions:

SAOS stress

\[
\frac{\gamma_{21}(t)}{\gamma_0} = \frac{\dot{\gamma}_0}{\gamma_0} \sin(\omega t + \delta) = G' \sin(\omega t) + G'' \cos(\omega t)
\]

Storage modulus

\[
G'(\omega) = \frac{\gamma_0}{\gamma_0} \sin(\delta)
\]

Loss modulus

\[
G''(\omega) = \frac{\gamma_0}{\gamma_0} \sin(\delta)
\]

Creep Shear Flow Material Functions

Imposed Stress

\[
y(t) = \begin{pmatrix} \nu_{21}(t) \nu_2 \\ 0 \\ 0 \end{pmatrix}_{123}
\]

\[
\nu_{21}(t) = \begin{cases} 0 & t < 0 \\ \bar{\nu}_0 & 0 \leq t < t_2 \\ 0 & t \geq t_2 \end{cases}
\]

Material Kinematic Response:

For creep, the material response is the form of deformation (stress is specified).

Material Function:

Shear creep compliance

\[
J(t, \bar{\nu}_0) = \frac{\gamma_{21}(0, t; \bar{\nu}_0)}{\bar{\nu}_0}
\]
Steady Elongational Flow Material Functions

Imposed Kinematics:
\[
\dot{\mathbf{y}} = \begin{pmatrix}
\dot{\varepsilon}(t)x_1 \\
-\frac{1}{2}\dot{\varepsilon}(t)x_2 \\
-\frac{1}{2}\dot{\varepsilon}(t)x_3
\end{pmatrix}_{123}
\]
\[
\dot{\varepsilon}(t) = \dot{\varepsilon}_0 = \text{constant}
\]

Material Stress Response:
\[
\tau_{11}(t) - \tau_{22}(t)
\]

Material Functions:
- **Elongational Viscosity**
 \[
 \eta_e(\dot{\varepsilon}_0) \equiv \frac{\tau_{11} - \tau_{22}}{\dot{\varepsilon}_0}
 \]
 Alternatively, \(\eta^*(\dot{\varepsilon}_0) \)

Start-up of Steady Elongation Material Functions

Imposed Kinematics:
\[
\dot{\mathbf{y}} = \begin{pmatrix}
\dot{\varepsilon}(t)x_1 \\
-\frac{1}{2}\dot{\varepsilon}(t)x_2 \\
-\frac{1}{2}\dot{\varepsilon}(t)x_3
\end{pmatrix}_{123}
\]
\[
\dot{\varepsilon}(t) = \begin{cases}
0 & t < 0 \\
\dot{\varepsilon}_0 & t \geq 0
\end{cases}
\]

Material Stress Response:
\[
\tau_{11}(t) - \tau_{22}(t)
\]

Material Functions:
- **Elongational Start-up Function**
 \[
 \eta^*_e(t, \dot{\varepsilon}_0) \equiv \frac{\tau_{11} - \tau_{22}}{\dot{\varepsilon}_0}
 \]
 Alternatively, \(\eta^*_e(t, \dot{\varepsilon}_0) \)
Summary

Rheological Material Functions

- Are the answer to the question “What exactly do we observe when we subject non-Newtonian fluids to deformation?”
- Are based on continuum view
- Provide a framework/vocabulary of comparison
- Help to categorize and organize observed material responses

Material Functions do not:

- Identify a material conclusively
- Tell us the form of \(f(B) \)

What exactly do we observe when we subject non-Newtonian fluids to deformation?
Summary

Rheological Material Functions

- Are the answer to the question “What exactly do we observe when we subject non-Newtonian fluids to deformation?”
- Are based on a continuum viewpoint
- Provide a framework/vocabulary of comparison
- Help to categorize and organize observed material responses

Material Functions do **not**:

- Identify a material conclusively
- Tell us the form of \(f(\mathbf{e}) \)

Except for Newtonian fluids, the structure of the model for stress is not known \(f(\mathbf{e}) = ?, \) and remains a mystery.

Cannot conclusively identify, but can classify and can be used to assess proposed models.