Successive Substitution

(by Dr. Tomas Co 5/7/2008)

Definition:

A numerical method for solving a nonlinear equation for the unknown.

Main Idea:

1. Rewrite a nonlinear function into a form given by

$$
\begin{equation*}
x=f(x) \tag{1}
\end{equation*}
$$

2. Starting with an initial guess, x_{0}, evaluate $f\left(x_{0}\right)$ to yield x_{1}. Continue the iteration

$$
\begin{equation*}
x_{k+1}=f\left(x_{k}\right) \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

until the result no longer changes to within a specified tolerance, i.e. after m iterations where

$$
\begin{equation*}
\left|x_{m+1}-x_{m}\right| \leq \epsilon \tag{3}
\end{equation*}
$$

Example:

Find x that solves the following equation

$$
\begin{equation*}
x^{3}+2 x+2=10 e^{-2 x^{2}} \tag{4}
\end{equation*}
$$

Rearranging equation (4) to the following form,

$$
\begin{equation*}
x=f(x)=\sqrt{-\frac{1}{2} \ln \left(\frac{x^{3}+2 x+2}{10}\right)} \tag{5}
\end{equation*}
$$

Then the spreadsheet can be implemented as given in Figure 1.

Figure 1. Solution using successive substitution.

Remarks:

1. The convergence is highly dependent on how ones defines $f(x)$. For instance, if we rearranged equation (4) to be

$$
\begin{equation*}
x=f(x)=\frac{1}{2}\left(10 e^{-2 x^{2}}-\left(x^{3}+2\right)\right) \tag{6}
\end{equation*}
$$

then the method will diverge.
2. Let x^{*} be the solution and x_{0} be the initial condition. One sufficient condition for convergence is that the slope of $f(x)$ is between 1 and -1 as shown in Figure 2 and 3.

Figure 2. Slope of $f(x)$ in the range $x^{*} \pm x_{0}$ is between 0 and 1 .

Figure 3. Slope of $f(x)$ in the range $x^{*} \pm x_{0}$ is between -1 and 0 .

