First Exam

CM3310
February 6, 2001

Name: \qquad Box No.

1. The height of liquid inside the spherical tank shown in Figure 1 can be modelled to be

$$
\frac{d h}{d t}=\frac{F_{O}-k_{v} u \sqrt{h}}{\pi r^{2}}
$$

where

$$
r=\sqrt{2 R h-h^{2}}
$$

Figure 1
with parameters fixed at $R=20 \mathrm{ft}$ and $k_{\mathrm{v}}=1.3\left(\mathrm{ft}^{3} / \mathrm{min}\right)\left(\mathrm{ft}^{-1 / 2}\right)$.
a) (10 pts) Find the steady state height corresponding to $F_{\mathrm{o}, \mathrm{ss}}=2 \mathrm{ft}^{3} / \mathrm{min}$ and $u_{\mathrm{ss}}=0.5$.
b) (20 pts) Obtain a linearized model for height, h, around the steady state found in problem (a). (Note: treat F_{o} as a disturbance variable instead of a constant.)
2. The dynamic model of for the temperature of two tanks are given by

$$
\begin{aligned}
& 10 \frac{d T_{1}}{d t}=\left(100-T_{1}\right)+10 T_{2} \\
& 5 \frac{d T_{2}}{d t}=\left(T_{1}-T_{2}\right)+2 u
\end{aligned}
$$

Using a proportional control, with $u_{0}=0.5$ and $T_{2 \text { set }}=30$,

$$
u=0.5+k_{c}\left(30-T_{2}\right)
$$

a) (20 pts) Find the range of values for proportional control gain, k_{c}, that would stabilize the process
b) (20 pts) Using a value for $k_{\mathrm{c}}=30$, calculate the steady state offset for T_{2}, with $T_{2 \text { set }}=30$.
3. (30 pts) The dynamic model for pressure in tank is given by:

$$
\frac{d P}{d t}=-3 P+2 u
$$

Using a PI control, with $u_{0}=10$,

$$
u=10+k_{c}\left(\left[P_{\text {set }}-P\right]+\frac{1}{\tau_{I}} \int\left[P_{\text {set }}-P\right] d t\right)
$$

With $k_{\mathrm{c}}=1.0$, find the range of values for τ_{I} that will make the process underdamped.
4. (Bonus: 10 pts) The nonlinear process dynamics for z is given by the following:

$$
\begin{equation*}
(1+z) \frac{d^{3} z}{d t^{3}}+3\left(\frac{d z}{d t}\right)^{3}=\frac{d^{2} z}{d t^{2}} \tag{1}
\end{equation*}
$$

By introducing the following variables,

$$
y=\frac{d z}{d t} \quad x=\frac{d^{2} z}{d t^{2}}
$$

and fixing $\Delta \mathrm{t}=0.1 \mathrm{sec}$, determine the functions $f\left(x_{k}, y_{k}, z_{k}\right), g\left(x_{k}, y_{k}, z_{k}\right)$ and $h\left(x_{k}, y_{k}\right.$,z_{k}) for the recursion equations \backslash

$$
\begin{aligned}
& z_{k+1}=z_{k}+f\left(x_{k}, y_{k}, z_{k}\right) \\
& y_{k+1}=y_{k}+g\left(x_{k}, y_{k}, z_{k}\right) \\
& x_{k+1}=x_{k}+h\left(x_{k}, y_{k}, z_{k}\right)
\end{aligned}
$$

based on Euler's method for numerical solution of equation (1).

