Name:

Box No.____

1. The height of liquid inside the spherical tank shown in Figure 1 can be modelled to be

with parameters fixed at R=20 ft and $k_v=1.3$ (ft³/min)(ft^{-1/2}).

- a) (10 pts) Find the steady state height corresponding to $F_{o,ss}=2$ ft³/min and $u_{ss}=0.5$.
- b) (20 pts) Obtain a linearized model for height, h, around the steady state found in problem (a). (Note: treat F_0 as a disturbance variable instead of a constant.)
- 2. The dynamic model of for the temperature of two tanks are given by

$$10\frac{dT_1}{dt} = (100 - T_1) + 10T_2$$

$$5\frac{dT_2}{dt} = (T_1 - T_2) + 2u$$

Using a proportional control, with $u_0=0.5$ and $T_{2 \text{ set}}=30$,

$$u = 0.5 + k_c (30 - T_2)$$

- a) (20 pts) Find the range of values for proportional control gain, k_c , that would stabilize the process
- b) (20 pts) Using a value for $k_c=30$, calculate the steady state offset for T_2 , with $T_{2 \text{ set}} = 30$.
- 3. (30 pts) The dynamic model for pressure in tank is given by:

$$\frac{dP}{dt} = -3P + 2u$$

Using a PI control, with $u_0=10$,

$$u = 10 + k_c \left(\left[P_{set} - P \right] + \frac{1}{\tau_I} \int \left[P_{set} - P \right] dt \right)$$

With $k_c=1.0$, find the range of values for τ_l that will make the process underdamped.

4. (Bonus:10 pts) The nonlinear process dynamics for z is given by the following:

$$\left(1+z\right)\frac{d^3z}{dt^3} + 3\left(\frac{dz}{dt}\right)^3 = \frac{d^2z}{dt^2} \tag{1}$$

By introducing the following variables,

$$y = \frac{dz}{dt} \qquad \qquad x = \frac{d^2 z}{dt^2}$$

and fixing $\Delta t=0.1$ sec, determine the functions $f(x_k, y_k, z_k)$, $g(x_k, y_k, z_k)$ and $h(x_k, y_k, z_k)$ for the recursion equations

$$z_{k+1} = z_k + f(x_k, y_k, z_k)$$

$$y_{k+1} = y_k + g(x_k, y_k, z_k)$$

$$x_{k+1} = x_k + h(x_k, y_k, z_k)$$

based on Euler's method for numerical solution of equation (1).