Solution to Exam 2: March 28, 2002

1. Amplitude: \quad a $:=0.015 \quad \mathrm{~h}:=-0.20$

Ultimate Gain: $\quad \mathrm{K}_{\mathrm{u}}:=\frac{4}{\pi} \cdot \frac{\mathrm{~h}}{\mathrm{a}} \quad \mathrm{K}_{\mathrm{u}}=-16.977$

$$
P_{u}:=4.6
$$

PID Tuning:

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{c}}:=\frac{\mathrm{K}_{\mathrm{u}}}{1.7} & \mathrm{~K}_{\mathrm{c}}=-9.986 \\
\tau_{\mathrm{I}}:=\frac{\mathrm{P}_{\mathrm{u}}}{2} & \tau_{\mathrm{I}}=2.3 \\
\tau_{\mathrm{D}}:=\frac{\mathrm{P}_{\mathrm{u}}}{8} & \tau_{\mathrm{D}}=0.575
\end{array}
$$

2. $\mathrm{s} \cdot \mathrm{L}\left(\mathrm{P}_{1}\right)=\alpha_{1} \cdot \mathrm{~L}\left(\mathrm{P}_{0}\right)-\left(\alpha_{1}+\alpha_{2}\right) \cdot \mathrm{L}\left(\mathrm{P}_{1}\right)+\alpha_{2} \cdot \mathrm{~L}\left(\mathrm{P}_{2}\right)$

$$
\mathrm{s} \cdot \mathrm{~L}\left(\mathrm{P}_{2}\right)=\alpha_{2} \cdot \mathrm{~L}\left(\mathrm{P}_{1}\right)-\left(\alpha_{2}+\alpha_{3}\right) \cdot \mathrm{L}\left(\mathrm{P}_{2}\right)+\alpha_{3} \cdot \mathrm{~L}\left(\mathrm{P}_{\mathrm{atm}}\right)+\beta \cdot \mathrm{L}(\mathrm{u})
$$

after reordering and letting $\alpha 1=2, \alpha 2=1, \alpha 3=2, \beta=3$,

$$
\begin{aligned}
& (\mathrm{s}+3) \cdot \mathrm{L}\left(\mathrm{P}_{1}\right)=2 \cdot \mathrm{~L}\left(\mathrm{P}_{0}\right)+\mathrm{L}\left(\mathrm{P}_{2}\right) \\
& (\mathrm{s}+3) \cdot \mathrm{L}\left(\mathrm{P}_{2}\right)=\mathrm{L}\left(\mathrm{P}_{1}\right)+2 \cdot \mathrm{~L}\left(\mathrm{P}_{\mathrm{atm}}\right)+3 \cdot \mathrm{~L}(\mathrm{u})
\end{aligned}
$$

solving simulatneously for $L(P 1)$,

$$
\mathrm{L}\left(\mathrm{P}_{1}\right)=\left(\frac{3}{\mathrm{~s}^{2}+6 \cdot \mathrm{~s}+8}\right) \cdot \mathrm{L}(\mathrm{u})+\left(\frac{2}{\mathrm{~s}^{2}+6 \cdot \mathrm{~s}+8}\right) \cdot \mathrm{L}\left(\mathrm{P}_{\mathrm{atm}}\right)+\left(\frac{2 \cdot \mathrm{~s}+6}{\mathrm{~s}^{2}+6 \cdot \mathrm{~s}+8}\right) \cdot \mathrm{L}\left(\mathrm{P}_{0}\right)
$$

3.

$\mathrm{L}(\mathrm{y})=\left[\frac{\mathrm{E} \cdot(\mathrm{A}+\mathrm{MB})}{1+\mathrm{E} \cdot(\mathrm{A} \cdot \mathrm{F}+\mathrm{M} \cdot \mathrm{B} \cdot \mathrm{F}-\mathrm{M} \cdot \mathrm{C})}\right] \cdot \mathrm{L}\left(\mathrm{y}_{\text {set }}\right)+\left[\frac{\mathrm{D}}{1+\mathrm{E} \cdot(\mathrm{A} \cdot \mathrm{F}+\mathrm{M} \cdot \mathrm{B} \cdot \mathrm{F}-\mathrm{M} \cdot \mathrm{C})}\right] \cdot \mathrm{L}(\mathrm{d})$
4. Closed loop transfer function:

$$
\begin{aligned}
\mathrm{G}_{\mathrm{cl}} & =\frac{\left[\frac{\mathrm{K}_{\mathrm{c}} \cdot(10 \cdot \mathrm{~s}+1) \cdot(2 \cdot \mathrm{~s}+1)}{10 \cdot \mathrm{~s} \cdot(0.1 \cdot \mathrm{~s}+1)}\right] \cdot\left(\frac{-2 \cdot \mathrm{~s}+1}{-3 \cdot \mathrm{~s}+1}\right)}{1+\left[\frac{\mathrm{K}_{\mathrm{c}} \cdot(10 \cdot \mathrm{~s}+1) \cdot(2 \cdot \mathrm{~s}+1)}{10 \cdot \mathrm{~s} \cdot(0 \cdot 1 \cdot \mathrm{~s}+1)}\right] \cdot\left(\frac{-2 \cdot \mathrm{~s}+1}{-3 \cdot \mathrm{~s}+1}\right)} \\
\mathbf{I} & =\frac{(2 \cdot \mathrm{~s}+1) \cdot\left[(2 \cdot \mathrm{~s}-1) \cdot \mathrm{K}_{\mathrm{c}} \cdot(10 \cdot \mathrm{~s}+1)\right]}{\left[\left(40 \cdot \mathrm{~K}_{\mathrm{c}}+3\right) \cdot \mathrm{s}^{3}+\left(4 \cdot \mathrm{~K}_{\mathrm{c}}+29\right) \cdot \mathrm{s}^{2}+\left(-10 \cdot \mathrm{~K}_{\mathrm{c}}-10\right) \cdot \mathrm{s}-\mathrm{K}_{\mathrm{c}}\right]}
\end{aligned}
$$

Routh-Hurwitz Array:

$$
\left[\begin{array}{cc}
40 \cdot \mathrm{~K}_{\mathrm{c}}+3 & -10 \cdot \mathrm{~K}_{\mathrm{c}}-10 \\
4 \cdot \mathrm{~K}_{\mathrm{c}}+29 & -\mathrm{K}_{\mathrm{c}} \\
\frac{-\left(327 \cdot \mathrm{~K}_{\mathrm{c}}+290\right)}{\left(4 \cdot \mathrm{~K}_{\mathrm{c}}+29\right)} & 0 \\
-\mathrm{K}_{\mathrm{c}} & 0
\end{array}\right]
$$

No value of Kc is available that would make the first column have the same sign.
5. $\quad L(f)=\frac{-12 \cdot s}{\left(s^{2}+9\right)^{2}}$

