CM 3310
Third Exam
April 24, 2003
Open Book/Open Notes
Name: \qquad Box No. \qquad

1. (15 pts) For one trial in a frequency response experiment where an input sinusoid with an amplitude, A, of 10 and period, P, of 10 sec , the engineer recorded the log modulus to be 7 dB and the phase shift to be -200°. From this information, determine the amplitude, B, and time shift, $t_{\text {shift }}$, of the output sinusoid for this particular trial.
2. For the feedback process given in Figure 1,

Figure 1.
the Nyquist plot of G_{p} is given in Figure 2.

Figure 2.
a) (10 pts) Using a proportional control, $G_{\mathrm{c}}=K_{\mathrm{c}}$, what should the value of proportional gain be in order to achieve a gain margin of 3.0.
b) (10 pts) Using a proportional control, $G_{\mathrm{c}}=K_{\mathrm{c}}$, what should the value of proportional gain be in order to achieve a phase margin of 45°.
3. (20 pts) Suppose, with the same feedback configuration given in Figure 1, the process, G_{p}, is replaced by another one whose Bode plots are given in Figure 3.
Determine a set of PID tuning parameters, i.e. $K_{\mathrm{c}}, \tau_{\mathrm{I}}$ and τ_{D}, based on the ZieglerNichols method.

4. (20 pts) Determine which transfer functions given in Table 1 will match each of the Bode plots given as cases 1 to 4, shown in Figure 4.

Case 1.

Case 2.

Case 3.

Case 4.

Figure 4.

Table 1.

$G_{1}(s)=\frac{1}{10 s+1}$	$G_{5}(s)=\frac{\exp (-10 s)}{10 s+1}$
$G_{2}(s)=\frac{1}{s+10}$	$G_{6}(s)=\frac{1}{-s+10}$
$G_{3}(s)=1-\frac{1}{s+1}$	$G_{7}(s)=\frac{(s+0.01)(s+10)}{(s+0.0001)(s+100)}$
$G_{4}(s)=\frac{(s+0.001)(s+100)}{(s+0.01)(s+10)}$	$G_{8}(s)=1+\frac{9}{s+1}$

5. (25 pts) For the process obtained as the equivalent transfer function from u to y given in Figure 5, obtain the magnitude ratio as a function of frequency ω (rads/sec).

Figure 5.
6. (Bonus: 10 pts) Given the path, Γ, which is the semicircle with radius $R=2$, shown in Figure 6,

Figure 6.
determine how many times the complex map of $\mathrm{G}(\mathrm{s})$, given by

$$
G(s)=\frac{1}{(s+1)^{2}+1}
$$

will encircle the origin in the clockwise manner, as s traverses the path Γ in the clockwise manner.

