Course Syllabus

Course: CBE 606 Applied Mathematics for Chemical Engineers

Instructor: Dr. Tomas Co, Email: tbco@mtu.edu
Main Text: T. Co, Methods of Applied Mathematics, (draft copy to be distributed in class)

Course Objective: To present the various methods of applied mathematics in solving and analyzing the solutions of engineering problems.

Course Description: The course will cover three main parts: a) matrix and vector analysis, b) ordinary differential equations and c) partial differential equations. Matrix theory will focus on the solution of equations, linear algebra and linear operators. Vector analysis will focus on basic operations and differential field operations, including the transformations to curvilinear coordinates and integral theorems. For ordinary differential equations, both analytical and numerical methods for solutions will be presented, including qualitative analysis and generalized series solutions. For partial differential equations, different solution methods will be discussed, including separation of variables method, integral transform methods, similarity methods and numerical methods. Visualization and analysis of the solutions will also be emphasized through computer projects.

References:

1. V.G. Jenson and G. V. Jeffreys, Mathematical Methods in Chemical Engineering, Academic Press, 1977
2. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, 1986
3. N. Amundson and R. Aris, Mathematical Methods in Chemical Engineering, Prentice Hall, 1966
4. J. Friedly, Dynamic Behavior of Processes, Prentice Hall, 1972
5. H. Mickley, T. Sherwood and C. Reed, Applied Mathematics in Chemical Engineering, McGraw Hill, 1957
6. D. Zwillinger, Handbook of Differential Equations, Academic Press, 1998
7. C.R. Wylie and L.C. Barnett, Advanced Engineering Mathematics, McGraw Hill, 1995
8. R.L. Burden and J.D. Faires, Numerical Analysis, Prindle, Weber \& Smith, 1985
9. L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhauser, 1997
10. P. O'Neil, Advanced Engineering Mathematics, Brooks/Cole, 2003

Requirements:

1. Assignments

Assignment 1: 10 pts Assignment 2: 10 pts Assignment 3: 10 pts Assignment 4: 10 pts Assignment 5: 10 pts
2. Exams

Exam 1: 10 pts
Exam 2: 10 pts
Exam 3: 10 pts
Final Exam: 20 pts

Grades:

100	-90	A
89.99	-80	AB
79.99	-70	B
69.99	-65	BC
64.99	-60	C
59.99	-55	CD
54.99	-50	D
49.99	-0	F

Course Outline

I. Matrix and Vector Theory

a. Review of Matrices

- Matrix Operations 1
- Solution of $\mathrm{Ax}=\mathrm{b}$
- Least Squares Method 2
- Eigenvalues and Eigenvectors 3
b. Vector and Tensor Analysis
- Notations and Operations 4
- Curvilinear Coordinates 5
- Integral Theorems

II. Ordinary Differential Equations

a. Review of Solutions of ODEs

- First Order
- Higher Order
- Symmetry (Similarity) Methods
b. Systems of Linear Differential Equations
- Stability
- Diagonalization
c. Numerical Methods
- Euler and Runge-Kutta Methods
- Multistep Methods
- Boundary Value Problems
d. Nonlinear Differential Equations
- Qualitative Analysis
- Stability and Limit Cycles
e. Series Solutions
- Frobenius Methods10
- Bessel and Legendre Equations
III. Partial Differential Equations
a. Classification and Boundary Conditions
b. First Order and the Method of Characteristics 11
c. Higher Order PDEs
- Similarity Transformations 12
- Orthogonal Functions
- Separation of Variables 13
- Laplace Transform Methods 14
d. Numerical Methods
- Finitie difference methods 15
- Finite elements methods

